
Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology

(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in

www.akyadav.in
+91 9911375598

October 16, 2019

Dr. A K Yadav Algorithms Design and Analysis 1/1



Task-scheduling problem I

The problem of scheduling unit-time tasks with deadlines and
penalties/profits for a single processor has the following inputs:
I Set S = {a1, a2, . . . , an} is a set of n tasks.
I Each task requires unit time to complete
I Every task ai having some deadline di such that 1 ≤ di ≤ n
I There is n task and every task requires unit time so in n unit

of time starting from 0 to n all tasks will be finished.
I If task ai finishes before deadline di then there will be no

penalty but if the task is late and finishes after deadline then
there will be a penalty pi

I Or if task ai finishes before deadline di then there will be
profit pi but if the task is late and finishes after deadline then
there will be no profit.

Dr. A K Yadav Algorithms Design and Analysis 2/1



Task-scheduling problem II

I Our aim is to minimize the penalty or maximize the profit.

minimize Penalty(S) =
∑
ai ∈S

pi if ai finishes after deadline di

maximize Profit(S) =
∑
ai ∈S

pi if ai finishes before deadline di

Dr. A K Yadav Algorithms Design and Analysis 3/1



Solution

I Suppose task ai having deadline di = 5 is late and task aj
having deadline dj = 6 is early

I If we execute task ai on or after 6, still it will be late
I If we execute task aj on or before 5, still it will be early
I So a early task will be early if we execute that task on or

before the deadline and a late task will be late if we execute
that task anywhere after deadline.

I We try to execute the high penalty task on time and if any
task is late then we can make that task maximum late.

I We try to execute the early task at the scheduled deadline or
before.

I We can always transform an arbitrary schedule into early-first
form, in which the early tasks precede the late tasks

I Complexity of the algorithm will be O(n2) using Greedy
because n independence check takes O(n) time.

Dr. A K Yadav Algorithms Design and Analysis 4/1



Thank you

Please send your feedback or any queries to akyadav1@amity.edu,
akyadav@akyadav.in or contact me on +91 9911375598

Dr. A K Yadav Algorithms Design and Analysis 5/1


