Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology
(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in
www.akyadav.in
+91 9911375598

October 16, 2019

Task-scheduling problem I

The problem of scheduling unit-time tasks with deadlines and penalties/profits for a single processor has the following inputs:

- ▶ Set $S = \{a_1, a_2, ..., a_n\}$ is a set of n tasks.
- ► Each task requires unit time to complete
- ightharpoonup Every task a_i having some deadline d_i such that $1 \le d_i \le n$
- ► There is *n* task and every task requires unit time so in *n* unit of time starting from 0 to *n* all tasks will be finished.
- ▶ If task a_i finishes before deadline d_i then there will be no penalty but if the task is late and finishes after deadline then there will be a penalty p_i
- Or if task a_i finishes before deadline d_i then there will be profit p_i but if the task is late and finishes after deadline then there will be no profit.

Task-scheduling problem II

▶ Our aim is to minimize the penalty or maximize the profit.

minimize
$$Penalty(S) = \sum_{a_i \in S} p_i$$
 if a_i finishes after deadline d_i

maximize
$$Profit(S) = \sum_{a_i \in S} p_i$$
 if a_i finishes before deadline d_i

Solution

- Suppose task a_i having deadline $d_i = 5$ is late and task a_j having deadline $d_j = 6$ is early
- ▶ If we execute task a; on or after 6, still it will be late
- ▶ If we execute task a_j on or before 5, still it will be early
- So a early task will be early if we execute that task on or before the deadline and a late task will be late if we execute that task anywhere after deadline.
- ► We try to execute the high penalty task on time and if any task is late then we can make that task maximum late.
- We try to execute the early task at the scheduled deadline or before.
- ► We can always transform an arbitrary schedule into early-first form, in which the early tasks precede the late tasks
- Complexity of the algorithm will be $O(n^2)$ using Greedy because n independence check takes O(n) time.

Thank you

Please send your feedback or any queries to akyadav1@amity.edu, akyadav@akyadav.in or contact me on +91~9911375598

