



Module I - Topics to be covered

Department of Computer Science and Engineering

- Overview on Modern Cryptography
- Number Theory
- Probability and Information Theory
- Classical Cryptosystems
- Cryptanalysis of Classical Cryptosystems
- Shannon's Theory

Recommended Reading

- Geof H. Givens and Jennifer A. Hoeting, "Computational Statistics", 2nd Edition, Wiley
- Christian P. Robert George Casella, "Monte Carlo Statistical Methods",
 Springer
- Boyd and Vandenberghe, "Convex Optimization", Cambridge University Press

Objective and Learning Outcome

Objective:

- To learn about applications of Optimization algorithms
- Broad working knowledge of modern computational statistics
- Practical understanding of how and why existing methods work
- Enabling effective use of modern statistical methods
- To explore the use of approach for solving real life problems

Learning Outcomes

After completion of the course, you will be able to:

- Basic understanding of computational statistics.
- Optimization Techniques understanding.
- Able to understand Moneo Carlo Methods.
- Able to understand Markov Methods.

Module Assessment and Self Work

Department of Computer Science and Engineering

Module Assessment

- Quiz
- Assignment

PSDA (Self Work)

- Minor Experiment
- Group Discussion
- Case study

Newton-Raphson

Newton-Raphson

- It is used for finding the root of the continuous, differentiable function.
- \circ If we know, the root we are looking for is near the point $x = x_0$
- The Newton's method state that the better choice of the root is

$$x_1 = x_0 - f(x_0)/f'(x_0)$$

This can be generalized as

$$\circ x_{n+1} = x_n - f(x_n) / f'(x_n)$$



Conjugate Gradients

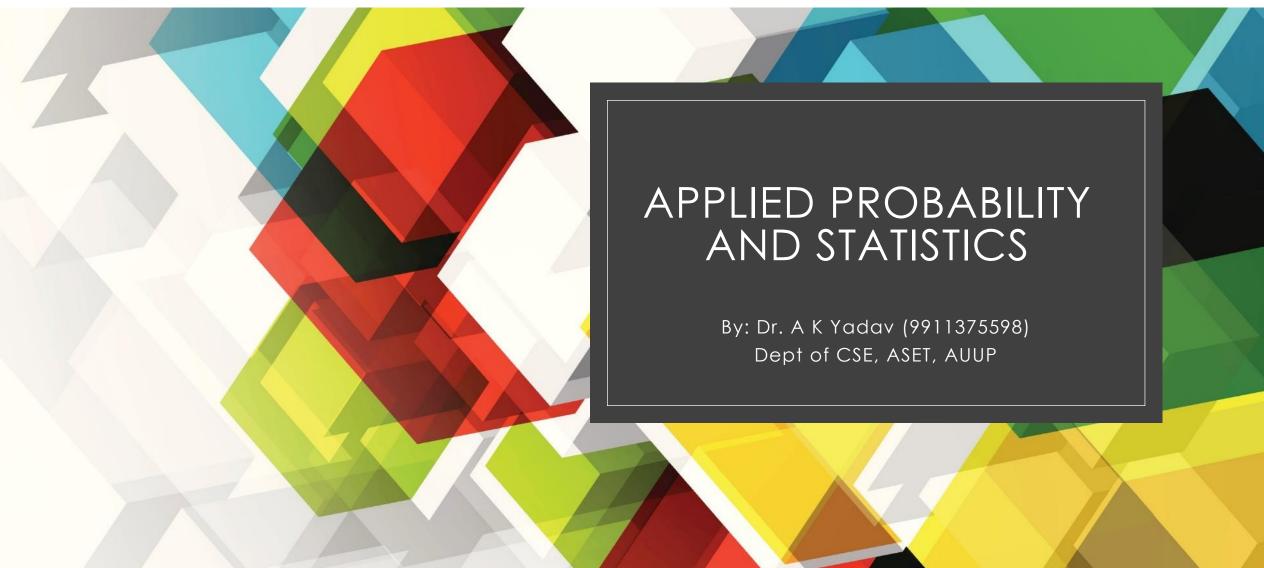
- The conjugate gradient is a method for solution of linear equations Ax = b
- A matrix must be positive-definite.
- The method is often implemented as an iterative algorithm
- The method is applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods
- Large sparse systems often arise when numerically solving partial differential equations or optimization problems
- The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization

- Suppose we want to solve the system of linear equations
- $\circ Ax = b$
- Where x is vector and A is a symmetric, positive-definite and real valued matrix of size $n \times n$. b is also known.
- \circ We want to find out the value of vector x

Algorithm


```
function x = conjgrad(A, b, x)
  \circ r = b - A * x;
  \circ p = r;
  rsold = r' * r;
  o for i = 1:length(b)
     \circ Ap = A * p;
     alpha = rsold / (p' * Ap);
     \circ x = x + alpha * p;
     ∘ r = r - alpha * Ap;
     \circ rsnew = r' * r;
     • if sqrt(rsnew) < 1e-10
        break
     • end

    p = r + (rsnew / rsold) * p;
     rsold = rsnew;
     end
  • end
```

Quasi-Newton methods

- $^{\circ}$ The discrete Newton method strategy for numerically approximating the Hessian by $M^{(t)}$ is a computationally burdensome one.
- \circ At each step, $M^{(t)}$ is wholly updated by calculating a new discrete difference for each element.
- A more efficient approach can be designed, based on the direction of the most recent step.
- When $x^{(t)}$ is updated to $x^{(t+1)} = x^{(t)} + h^{(t)}$, the opportunity is presented to learn about the curvature of g in the direction of $h^{(t)}$ near $x^{(t)}$.
- \circ Then $M^{(t)}$ can be efficiently updated to incorporate this information
- \circ To do this, we must abandon the componentwise discrete-difference approximation to $g^{\prime\prime}$ used in the discrete Newton method.

- However, it is possible to retain a type of secant condition based on differences.
- \circ Specifically, a secant condition holds for $M^{(t+1)}$ if

$$\circ g'(x^{(t+1)}) - g'(x^{(t)}) = M^{(t+1)}(x^{(t+1)} - x^{(t)})$$

 $^{\circ}$ This condition suggests that we need a method to generate $M^{(t+1)}$ from $M^{(t)}$ in a manner that requires less calculations and satisfies the above equation.

Applied Probability and Statistics

Module-1, Lecture-4

By: Dr. A K Yadav (9911375598) Dept of CSE, ASET, AUUP

Univariate Fisher scoring

- As we know $I(\theta)$ can be approximated by $-l''(\theta)$ in likelihood inference.
- •In optimization of g in an MLE problem, $-l''(\theta)$ cab be replaced by $I(\theta)$ in Newton update.
- •This yields an updating increment of $h(t) = l'(\theta^{(t)})/I(\theta^{(t)})$ where $I(\theta^{(t)})$ is the expected Fisher information evaluated at $\theta^{(t)}$.
- •So the updating equation is $\theta^{(t+1)} = \theta^{(t)} + l'(\theta^{(t)})I(\theta^{(t)})^{-1}$
- This approach is called Fisher scoring.

Univariate Fisher scoring

- Fisher scoring and Newton's method both have the same asymptotic properties
- But for individual problems one may be computationally or analytically easier than the other.
- Generally, Fisher scoring works better in the beginning to make rapid improvements
- While Newton's method works better for refinement near the end.

Multivariate Fisher scoring

• To use the Newton's method update, we again approximate $g(x^*)$ by the quadratic Taylor series expansion

$$g(\mathbf{x}^*) = g(\mathbf{x}^{(t)}) + (\mathbf{x}^* - \mathbf{x}^{(t)})^{\mathrm{T}} \mathbf{g}'(\mathbf{x}^{(t)}) + \frac{1}{2} (\mathbf{x}^* - \mathbf{x}^{(t)})^{\mathrm{T}} \mathbf{g}''(\mathbf{x}^{(t)}) (\mathbf{x}^* - \mathbf{x}^{(t)})$$

- and maximize this quadratic function with respect to x^* to find the next iterate.
- Setting the gradient of the right-hand side equal to zero yields

$$\mathbf{g}'(\mathbf{x}^{(t)}) + \mathbf{g}''(\mathbf{x}^{(t)})(\mathbf{x}^* - \mathbf{x}^{(t)}) = 0$$

This provides the update

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \mathbf{g}''(\mathbf{x}^{(t)})^{-1}\mathbf{g}'(\mathbf{x}^{(t)})$$

- The multivariate Newton increment is $h^{(t)} = -g''(x^{(t)})^{-1}g'(x^{(t)})$
- As in the univariate case, in MLE problems we may replace the observed information at $\theta^{(t)}$ with $I(\theta^{(t)})$, the expected Fisher information at $\theta^{(t)}$.
- This yields the multivariate Fisher scoring approach with update given by $\theta^{(t+1)} = \theta^{(t)} + I(\theta^{(t)})^{-1}I'(\theta^{(t)})$
- This method is asymptotically equivalent to Newton's method.

EM algorithm

- The EM algorithm iteratively seeks to maximize $L(\theta|x)$ with respect to θ
- Let $\theta^{(t)}$ denote the estimated maximizer at iteration t, for t=0,1,...
- Define $Q(\theta|\theta^{(t)})$ to be the expectation of the joint log likelihood for the complete data, conditional on the observed data X = x

$$Q(\theta|\theta^{(t)}) = E\left\{\log L(\theta|\mathbf{Y}) \mid \mathbf{x}, \theta^{(t)}\right\}$$

$$= E\left\{\log f_{\mathbf{Y}}(\mathbf{y}|\theta) \mid \mathbf{x}, \theta^{(t)}\right\}$$

$$= \int \left[\log f_{\mathbf{Y}}(\mathbf{y}|\theta)\right] f_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathbf{x}, \theta^{(t)}) d\mathbf{z},$$

- The last equation emphasizes that Z is the only random part of Y once we are given X = x
- EM is initiated from $\theta^{(0)}$ then alternates between two steps:
- E for expectation and M for maximization.
- The algorithm is summarized as:

- 1. E step: Compute $Q(\theta|\theta^{(t)})$
- 2. M step: Maximize $Q(\theta|\theta^{(t)})$ with respect to θ and set $\theta^{(t+1)}$ equal to the maximizer of Q
- 3. Return to the **E step** unless a stopping criterion has been met
- Stopping criteria for optimization may be based upon:
- $(\theta^{(t+1)} \theta^{(t)})^T (\theta^{(t+1)} \theta^{(t)})$ or $|Q(\theta^{(t+1)} | \theta^{(t)}) Q(\theta^{(t)} | \theta^{(t)})|$

EM Variants

- Improving the E Step
- Improving the M Step
- Acceleration Methods:
 - Aitken Acceleration
 - Quasi-Newton Acceleration

Applied Probability and Statistics

Module-1, Lecture-5

By: Dr. A K Yadav (9911375598) Dept of CSE, ASET, AUUP

LU Decomposition

- Suppose we can write the matrix A_{NN} as a product of two matrices
- A = LU-Eq. 1 where L is lower triangular and U upper triangular

$$\begin{bmatrix} \alpha_{11} & 0 & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\ 0 & \beta_{22} & \beta_{23} & \beta_{24} \\ 0 & 0 & \beta_{33} & \beta_{34} \\ 0 & 0 & 0 & \beta_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- We can use a decomposition to solve the linear set Ax = b Eq. 2
- Ax = LUx = Ly = b Eq. 3
- First solving for the vector y such that Ly = b Eq. 4
- Then solving Ux = y Eq. 5

- What is the advantage of breaking up one linear set into two successive ones?
- Eq. 4 can be solved by forward substitution as follows

•
$$y_1 = \frac{b_1}{\alpha_{11}}$$
 and $y_i = \frac{1}{\alpha_{ii}} [b_i - \sum_{j=1}^{i-1} \alpha_{ij} y_j] \ i = 2,3,...,N$ Eq. 6

After that Eq. 5 can be solved by back substitution

•
$$x_{N=} \frac{y_N}{\beta_{NN}}$$
 and $x_i = \frac{1}{\beta_{ii}} [y_i - \sum_{j=i+1}^N \beta_{ij} x_j] i = N, N-1, ..., 1 Eq. 7$

- How can we solve for L and U, given A?
- First, we write out the i, j^{th} component of Eq. 1
- $\bullet \alpha_{i1}\beta_{1j} + \dots + \alpha_{ij}\beta_{ij} + \dots + \alpha_{iN}\beta_{Nj} = \alpha_{ij}$
- The number of terms in the sum depends on whether i is smaller or j.
- Three cases will be there:
- i < j: $\alpha_{i1}\beta_{1j} + \alpha_{i2}\beta_{2j} ... + \alpha_{ii}\beta_{ij} = \alpha_{ij} Eq. 8$
- i = j: $\alpha_{i1}\beta_{1j} + \alpha_{i2}\beta_{2j} ... + \alpha_{ii}\beta_{jj} = \alpha_{ij} Eq. 9$
- i > j: $\alpha_{i1}\beta_{1j} + \alpha_{i2}\beta_{2j} \dots + \alpha_{ij}\beta_{jj} = a_{ij} Eq. 10$

Crout's algorithm

Department of Computer Science and Engineering

- Set $\alpha_{ii} = 1, i = 1, ..., N$
- For each $j=1,2,3,\ldots,N$ do these two procedures: First, for $i=1,2,\ldots,j$, use Eq 8 and 9 to solve for β_{ij} , namely

$$eta_{ij} = a_{ij} - \sum_{k=1}^{i-1} lpha_{ik} eta_{kj}$$
. Eq. 12

(When i=1 in Eq 12 the summation term is taken to mean zero.) Second, for $i=j+1, j+2, \ldots, N$ use Eq. 10 to solve for α_{ij} , namely

$$\alpha_{ij} = \frac{1}{\beta_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} \alpha_{ik} \beta_{kj} \right). \quad ^{\text{Eq 13}}$$

Be sure to do both procedures before going on to the next j.

- How to Find the Inverse of $N \times N$ Matrix?
- Compute the determinant of the given matrix
- Calculate the determinant of N $-1 \times N 1$ minor matrices
- Formulate the matrix of cofactors
- Take the transpose of the cofactor matrix to get the adjugate matrix
- Divide each term of the adjugate matrix by the determinant

$$\bullet A^{-1} = \frac{1}{\det(A)} adj(A)$$

Inverse of Matrix

$$\bullet AA^{-1} = I$$

- AB = I where $B = A^{-1}$
- We know A = LU, we have I and we must find out B
- Find out B column wise
- LUB = I
- UB = Y
- $\bullet LY = I$

Applied Probability and Statistics

Module-1, Lecture-6

By: Dr. A K Yadav (9911375598) Dept of CSE, ASET, AUUP

Cholesky Decomposition

- The Cholesky decomposition or Cholesky factorization is a decomposition of a symmetric, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose.
- The Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.
- Suppose we can write the matrix A_{NN} as a product of two matrices that is $A = LL^T$ Eq. 1 where L is lower triangular and L^T is its transpose.

- We can use a decomposition to solve the linear set Ax = b Eq. 2
- $AX = LL^TX = L(L^TX) = LY = B$ Eq.3
- First solving for the vector Y such that LY = B Eq. 4
- Then solving $L^T X = Y$ Eq. 5

$$\bullet L_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i} L_{ik}^2}$$

Applied Probability and Statistics

Module-1, Lecture-7

By: Dr. A K Yadav (9911375598) Dept of CSE, ASET, AUUP

Low Rank Updates for the Cholesky Decomposition

Department of Computer Science and Engineering

Suppose $A \in \mathbf{R}^{n \times n}$ is nonsingular, $u, v \in \mathbf{R}^n$ with $1 + v^T A^{-1} u \neq 0$, and we want to solve two sets of linear equations

$$Ax = b,$$
 $(A + uv^T)\tilde{x} = b.$

The solution \tilde{x} of the second system is called a rank-one update of x. The matrix inversion lemma allows us to calculate the rank-one update \tilde{x} very cheaply, once we have computed x. We have

$$\tilde{x} = (A + uv^{T})^{-1}b$$

$$= (A^{-1} - \frac{1}{1 + v^{T}A^{-1}u}A^{-1}uv^{T}A^{-1})b$$

$$= x - \frac{v^{T}x}{1 + v^{T}A^{-1}u}A^{-1}u.$$

We can therefore solve both systems by factoring A, computing $x = A^{-1}b$ and $w = A^{-1}u$, and then evaluating

$$\tilde{x} = x - \frac{v^T x}{1 + v^T w} w.$$