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o Overview on Modern Cryptography

o Number Theory

o Probabllity and Information Theory

o Classical Cryptosystems

o Cryptanalysis of Classical Cryptosystems
o Shannon's Theory
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o Geof H. Givens and Jennifer A. Hoeting, "Computational Statistics”, 2nd
Edition, Wiley

o Christian P. Robert George Casella, “Monte Carlo Statistical Methods”,
Springer

o Boyd and Vandenberghe, “Convex Optimization”, Cambridge
University Press




Department of Computer

AMI'TY Objective and Learning Outcome science and Engineering

UNIVERSITY

Objective:

(¢]

To learn about applications of Optimization algorithms

(¢]

Broad working knowledge of modern computational stafistics
Practical understanding of how and why existing methods work
Enabling effective use of modern stafistical methods

(¢]

(¢]

(¢]

To explore the use of approach for solving real life problems

Learning Outcomes

After completion of the course, you will be able to:
» Basic understanding of computational statistics.
» Optimization Technigues understanding.

* Able to understand Moneo Carlo Methods.

e Able to understand Markov Methods.
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Module Assessment
o Quiz

o Assignment

PSDA (Self Work)
o Minor Experiment
o Group Discussion

o Case study
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Newton-Raphson
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o It is used for finding the root of the continuous, differentiable function.
o [f we know, the root we are looking for is near the point x = x,
o The Newton’s method state that the better choice of the root is

°xy = x9 — f(x0)/f (x0)

o This can be generalized as

° Xpy1 = Xn — [ (xn)/f " (xp)
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o The conjugate gradient is a method for solution of linear equations
Ax =D

o A matrix must be positive-definite.
o The method is often implemented as an iterative algorithm

o The method is applicable to sparse systems that are too large to be
handled by a direct implementation or other direct methods

o Large sparse systems often arise when numerically solving partial
differential equations or optimization problems

oThe conjugate gradient method can also be used to solve
unconstrained optimization problems such as energy minimization
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o SUppose we want to solve the system of linear equations
cAx = b

o Where x is vector and A is a symmetric, positive-definite and real
valued maitrix of size n X n. b is also known.

o We want to find out the value of vector x
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function x = conjgrad(A, b, x)
or=p-A*x
°op =T,
orsold=r*r;
o fori= 1:length(b)
o Ap=A*p;
o adlpha =rsold / (p'* Ap);
X =X+ alpha * p;
r=r-alpha* Ap;
rsnew =r *r;
if sgrt(rsnew) < 1e-10
o pbreak
end
p=r+ (rsnew /rsold) * p;
rsold = rsnew;
end
o end

o

(0]

(¢]

(¢]

o

o

o

(¢]
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o The discrete Newton method strategy for numerically approximating the
Hessian by M® is a computationally burdensome one.

o At each step, M® is wholly updated by calculating a new discrete difference
for each element.

o A more efficient approach can be designed, based on the direction of the
most recent step.

o When x® isupdated to xV = x® + p®O the opportunity is presented to
learn about the curvature of g in the direction of A® near x® |

o Then M® can be efficiently updated to incorporate this information

o To do this, we must abandon the componentwise discrete-difference
approximation to g'" used in the discrete Newton method.
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- However, it is possible to retain a type of secant condition based on
differences.
o Specifically, a secant condition holds for ME+D) jf
o g’(x(t‘l'l)) — g’(x(t)) = M(t+1)(x(t+1) — X(t))
o This condition suggests that we need a method to generate M&*D from

M® in a manner that requires less calculations and satisfies the above
equation.
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* As we know I(0) can be approximated by —1"(0) in likelihood

iInference.

°|In optimization of g in an MLE problem, —1"'(8) cab be replaced
by I(6) in Newton update.

*This yields an updating increment of h(t) = I'(0®)/1(6®) where
1(01) is the expected Fisher information evaluated at 8.

*So the updating equationis 8¢+ = g 4 l'(g(t))l(g(t))_l

*This approach is called Fisher scoring.
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* Fisher scoring and Newton's method both have the same asympftotic

properties

* But for individual problems one may be computationally or

analyfically easier than the other.

* Generally, Fisher scoring works better in the beginning to make rapid

Improvements

* While Newton's method works better for refinement near the end.
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* To use the Newton’'s method update, we again approximate
g(x*) by the quadratic Taylor series expansion

1
o) = g + (" = xN) ) + D" —xN g —x)

*and maximize this guadratic function with respect to x* to find
the next iterate.

*Setting the gradient of the right-hand side equal to zero yields
g x") +g"xyx* —x) =0

This provides the update

X{?—I—l) — X(F) _ gh’(x{?‘))—lga’(x(ﬂ)



Department of Computer

AMITY Science and Engineering

UNIVERSITY

* The multivariate Newton increment is h®® = —g"" (x(©)1g' (x(®))

* As in the univariate case, in MLE problems we may replace the
observed information at 6 with 1(6(®), the expected Fisher
information at ().

* This yields the multivariate Fisher scoring approach with update given
by 0C¢+D = g® + 1(9®)~11'(9WD)

* This method is asymptotically equivalent to Newton's method.
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* The EM algorithm iteratively seeks to maximize L(6|x) with respect to 6
oLet 0D denote the estimated maximizer at iteration t, fort = 0,1, ...

* Define Q(0160™) to be the expectation of the joint log likelihood for the

complete data, conditional on the observed data X = x
00160y = E {log LOY) | x. 9(”}
= £ {log fv(y10) | x. 6]

= / log fy(y|0)] fzix(z|x, ) dz.
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*The last equation emphasizes that Z is the only random part of Y once

we are given X = x
*EM is initiated from 8(® then alternates between two steps:
* E for expectation and M for maximization.

* The algorithm is summarized as:
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1. E step: Compute Q(6|61)

2. M step: Maximize Q(0]0®) with respect to 8 and set 8¢+ equal to
the maximizer of Q

3. Return to the E step unless a stopping criterion has been met

* Stopping criteria for optimization may be based upon:

o (9D T (gt+1)— 1)y or |Q(3(t+1)‘g(t)) — Q(@(t)‘g(t)”
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°Improving the E Step

*|mproving the M Step

* Acceleration Methods:
* Aitken Acceleration

* Quasi-Newton Acceleration
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* Suppose we can write the matrix Ayy As a product of two matrices

°*A = LU-Eq. 1 where L is lower friangular and U upper triangular

11 0 0 0 ] : £11 P2 Pz Pia i @11 a1 a1z aia |
a1 @y 0 0 . O [Bog Pag PBaa | | a21 a2 a3 aog
¥31 ¥39  ¥33 0 0 0 333 (B34 | | a31 a32 a3z asg

| Q41 42 43 44 0 0 0 (344 i | aq1  a42 a43 a44 |

* We can use a decomposition 1o solve the linear set Ax = b EQ. 2
*Ax =LUx=Ly=bEQ.3

* First solving for the vector y such that Ly = b EQ. 4

°*Then solving Ux =y EQ. 5
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* What is the advantage of breaking up one linear set into two

successive onese

*EQ. 4 can be solved by forward substitution as follows
b 1 | .
*Vi =a—1110nd Vi :a_ii[bi_ ;=116(Uy]] 1 =23,..,N Eq 6

* After that Eg. 5 can be solved by back substitution

o y 1 .
xN=ﬁOndxi—ﬁ—ii[yi— ‘llyzi+1ﬁinj]l—N,N—1,...,.| Eq7
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* How can we solve for L and U, given A¢

*First, we write out the i, j** component of Eq. 1

*ai1f1j + ot aifij + o+ ain Py = aj

°*The number of tferms in the sum depends on whether i is smaller or j.
*Three cases will be there:

* i <jiapfij+ apfyj..+aiifij = a;j £q. 8

*i =] apf1j + appfoj .+ yfj; = ai; Eq. 9

° >j: ailﬁlj ~+ aizﬁzj . C(Uﬁ” = aij Eq 10
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e Setav;;, = 1,2 =1.....N
e For each 7 = 1.2.3....,N do these two procedures: First, for 1 =
1.2,...,7.useeqsando to solve for (3,;, namely

13 — Qg5 — E Vil | -}LJ Eq. 12

(When? = 1 1n eq12  the summation term 1s taken to mean zero.) Second,

fore =7+ 1.7 +2..... N use €eq10 to solve for a;;, namely
7—1
Eq 13
g5 = E i \jl"ﬂj‘ -

Be sure to do both procedures before going on to the next ;.
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*How to Find the Inverse of N X N Matrixe

* Compute the determinant of the given matrix

* Calculate the determinant of N — 1 X N — 1 minor matrices

* Formulate the matrix of cofactors

* Take the transpose of the cofactor matrix to get the adjugate matrix

* Divide each term of the adjugate matrix by the determinant

o N1 — 1
4 ~ det(4)

adj(A)
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*AA™t =1

*AB =1 where B=A"1

*We know A = LU, we have I and we must find out B
* Find out B column wise

*LUB =1

*UB =Y

°LY =1
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* The Cholesky decomposition or Cholesky factorization is a decomposition of
a symmetric, positive-definite matrix into the product of a lower triangular

matrix and its conjugate transpose.

* The Cholesky decomposition is roughly twice as efficient as the LU

decomposition for solving systems of linear equations.

* Suppose we can write the matrix Ay as a product of two matrices that is

A = LL" Eq. 1 where L is lower triangular and L' is its transpose.
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* \We can use a decomposition to solve the linear set Ax = b Eq. 2
*AX = LLTX = L(LI'X) = LY = B Eq.3

* First solving for the vector Y such that LY = B Eq. 4

*Then solving L'X =Y Eq. 5

°Ly = \/Aii - Yo L%
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Suppose A € R™ ™ is nonsingular, u,v € R™ with 1 + o7 A7u # 0, and we want
to solve two sets of linear equations

Axr =b, (A +uwl)z =0

The solution & of the second system is called a rank-one update of x. The matrix
inversion lemma allows us to calculate the rank-one update x very cheaply. once
we have computed x. We have

P o= (A+uw!)™t
_ 1 _ _
= (AT —————A"w AT
14+ vl A= 1w
vl x _q
= I — 14w
1+ vt A 1w
We can therefore solve both systems by factoring A. computing z = A~!b and

w = A7 1y, and then evaluating

v T x

— —=w.
1+ vTw

r=2x
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