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Module I - Topics to be covered 

◦Overview on Modern Cryptography
◦Number Theory
◦ Probability and Information Theory
◦Classical Cryptosystems
◦Cryptanalysis of Classical Cryptosystems
◦ Shannon’s Theory
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◦ Geof H. Givens and Jennifer A. Hoeting, "Computational Statistics", 2nd 
Edition, Wiley

◦ Christian P. Robert George Casella, “Monte Carlo Statistical Methods”, 
Springer

◦ Boyd and Vandenberghe, “Convex Optimization”, Cambridge 
University Press
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Objective: 

◦ To learn about applications of Optimization algorithms
◦ Broad working knowledge of modern computational statistics
◦ Practical understanding of how and why existing methods work 
◦ Enabling effective use of modern statistical methods
◦ To explore the use of approach for solving real life problems

Learning Outcomes
After completion of the course, you will be able to:
• Basic understanding of computational statistics.
• Optimization Techniques understanding.
• Able to understand Moneo Carlo Methods.
• Able to understand Markov Methods.
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Module Assessment
◦ Quiz

◦ Assignment

PSDA (Self Work)
◦ Minor Experiment

◦ Group Discussion

◦ Case study
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Newton-Raphson
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◦ It is used for finding the root of the continuous, differentiable function. 

◦ If we know, the root we are looking for is near the point x = x0

◦ The Newton’s method state that the better choice of the root is 

◦ 𝑥𝑥1 = 𝑥𝑥0 − 𝑓𝑓(𝑥𝑥0)/𝑓𝑓′ 𝑥𝑥0
◦ This can be generalized as

◦ 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝑓𝑓(𝑥𝑥𝑛𝑛)/𝑓𝑓′ 𝑥𝑥𝑛𝑛
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Conjugate Gradients 

◦ The conjugate gradient is a method for solution of linear equations
𝐴𝐴𝐴𝐴 = 𝑏𝑏

◦ 𝐴𝐴 matrix must be positive-definite.
◦ The method is often implemented as an iterative algorithm
◦ The method is applicable to sparse systems that are too large to be

handled by a direct implementation or other direct methods
◦ Large sparse systems often arise when numerically solving partial

differential equations or optimization problems
◦ The conjugate gradient method can also be used to solve

unconstrained optimization problems such as energy minimization
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◦ Suppose we want to solve the system of linear equations

◦ 𝐴𝐴𝐴𝐴 = 𝑏𝑏

◦ Where 𝑥𝑥 is vector and 𝐴𝐴 is a symmetric, positive-definite and real 
valued matrix of size 𝑛𝑛 × 𝑛𝑛. 𝑏𝑏 is also known.

◦ We want to find out the value of vector 𝑥𝑥
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function x = conjgrad(A, b, x)
◦ r = b - A * x;
◦ p = r;
◦ rsold = r' * r;
◦ for i = 1:length(b)
◦ Ap = A * p;
◦ alpha = rsold / (p' * Ap);
◦ x = x + alpha * p;
◦ r = r - alpha * Ap;
◦ rsnew = r' * r;
◦ if sqrt(rsnew) < 1e-10
◦ break

◦ end
◦ p = r + (rsnew / rsold) * p;
◦ rsold = rsnew;
◦ end

◦ end
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Quasi-Newton methods

◦ The discrete Newton method strategy for numerically approximating the 
Hessian by 𝑀𝑀(𝑡𝑡) is a computationally burdensome one. 

◦ At each step, 𝑀𝑀(𝑡𝑡) is wholly updated by calculating a new discrete difference 
for each element. 

◦ A more efficient approach can be designed, based on the direction of the 
most recent step.

◦ When 𝑥𝑥 𝑡𝑡 is updated to   𝑥𝑥 𝑡𝑡+1 =  𝑥𝑥 𝑡𝑡 +  ℎ 𝑡𝑡 , the opportunity is presented to 
learn about the curvature of 𝑔𝑔 in the direction of  ℎ 𝑡𝑡 near  𝑥𝑥 𝑡𝑡 . 

◦ Then  𝑀𝑀(𝑡𝑡) can be efficiently updated to incorporate this information

◦ To do this, we must abandon the componentwise discrete-difference 
approximation to 𝒈𝒈′′ used in the discrete Newton method.
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◦ However, it is possible to retain a type of secant condition based on 
differences. 

◦ Specifically, a secant condition holds for  𝑀𝑀(𝑡𝑡+1) if
◦ 𝑔𝑔′(𝑥𝑥(𝑡𝑡+1)) − 𝑔𝑔′(𝑥𝑥(𝑡𝑡)) = 𝑀𝑀 𝑡𝑡+1 (𝑥𝑥 𝑡𝑡+1 − 𝑥𝑥 𝑡𝑡 )

◦ This condition suggests that we need a method to generate 𝑀𝑀(𝑡𝑡+1) from  
𝑀𝑀(𝑡𝑡) in a manner that requires less calculations and satisfies the above 
equation. 
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Univariate Fisher scoring

• As we know 𝐼𝐼(𝜃𝜃) can be approximated by −𝑙𝑙𝑙𝑙(𝜃𝜃) in likelihood 
inference.

• In optimization of 𝑔𝑔 in an MLE problem, −𝑙𝑙𝑙𝑙(𝜃𝜃) cab be replaced 
by 𝐼𝐼(𝜃𝜃) in Newton update.

•This yields an updating increment of ℎ 𝑡𝑡 = 𝑙𝑙′(𝜃𝜃 𝑡𝑡 )/𝐼𝐼(𝜃𝜃(𝑡𝑡)) where 
𝐼𝐼(𝜃𝜃 𝑡𝑡 ) is the expected Fisher information evaluated at 𝜃𝜃(𝑡𝑡). 

•So the updating equation is 𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) + 𝑙𝑙′ 𝜃𝜃 𝑡𝑡 𝐼𝐼 𝜃𝜃 𝑡𝑡 −1

•This approach is called Fisher scoring.
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Univariate Fisher scoring

• Fisher scoring and Newton’s method both have the same asymptotic 

properties

•But for individual problems one may be computationally or 

analytically easier than the other.

•Generally, Fisher scoring works better in the beginning to make rapid 

improvements

•While Newton’s method works better for refinement near the end.
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Multivariate Fisher scoring

• To use the Newton’s method update, we again approximate 
𝑔𝑔(𝑥𝑥∗) by the quadratic Taylor series expansion

•and maximize this quadratic function with respect to 𝑥𝑥∗ to find 
the next iterate. 

•Setting the gradient of the right-hand side equal to zero yields
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• The multivariate Newton increment is ℎ(𝑡𝑡) = −𝑔𝑔′′(𝑥𝑥 𝑡𝑡 )−1𝑔𝑔′(𝑥𝑥 𝑡𝑡 )

•As in the univariate case, in MLE problems we may replace the 

observed information at 𝜃𝜃(𝑡𝑡) with 𝐼𝐼(𝜃𝜃(𝑡𝑡)), the expected Fisher 

information at 𝜃𝜃(𝑡𝑡). 

• This yields the multivariate Fisher scoring approach with update given 

by 𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) + 𝐼𝐼(𝜃𝜃 𝑡𝑡 )−1𝐼𝐼′(𝜃𝜃 𝑡𝑡 )

• This method is asymptotically equivalent to Newton’s method.
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EM algorithm

• The EM algorithm iteratively seeks to maximize 𝐿𝐿(𝜃𝜃|𝑥𝑥) with respect to 𝜃𝜃

•Let 𝜃𝜃(𝑡𝑡) denote the estimated maximizer at iteration 𝑡𝑡, for 𝑡𝑡 = 0,1, …

•Define 𝑄𝑄(𝜃𝜃|𝜃𝜃 𝑡𝑡 ) to be the expectation of the joint log likelihood for the 

complete data, conditional on the observed data 𝑋𝑋 = 𝑥𝑥
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• The last equation emphasizes that 𝑍𝑍 is the only random part of 𝑌𝑌 once 

we are given 𝑋𝑋 = 𝑥𝑥

•EM is initiated from 𝜃𝜃(0) then alternates between two steps: 

•E for expectation and M for maximization. 

• The algorithm is summarized as:
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1. E step: Compute 𝑄𝑄(𝜃𝜃|𝜃𝜃 𝑡𝑡 )

2. M step: Maximize 𝑄𝑄(𝜃𝜃|𝜃𝜃 𝑡𝑡 ) with respect to θ and set 𝜃𝜃(𝑡𝑡+1) equal to 

the maximizer of 𝑄𝑄

3. Return to the E step unless a stopping criterion has been met

•Stopping criteria for optimization may be based upon:

• (𝜃𝜃(𝑡𝑡+1)- 𝜃𝜃 𝑡𝑡 )𝑇𝑇(𝜃𝜃(𝑡𝑡+1)− 𝜃𝜃 𝑡𝑡 ) or |𝑄𝑄 𝜃𝜃 𝑡𝑡+1 𝜃𝜃 𝑡𝑡 − 𝑄𝑄 𝜃𝜃 𝑡𝑡 𝜃𝜃 𝑡𝑡 |
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EM Variants

• Improving the E Step

• Improving the M Step

•Acceleration Methods: 

•Aitken Acceleration 

•Quasi-Newton Acceleration
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LU Decomposition

•Suppose we can write the matrix 𝐴𝐴𝑁𝑁𝑁𝑁 as a product of two matrices 

•𝐴𝐴 = 𝐿𝐿𝐿𝐿-Eq. 1 where 𝐿𝐿 is lower triangular and 𝑈𝑈 upper triangular

•We can use a decomposition to solve the linear set 𝐴𝐴𝐴𝐴 = 𝑏𝑏 Eq. 2

•𝐴𝐴𝐴𝐴 = 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿 = 𝑏𝑏 Eq. 3

•First solving for the vector 𝑦𝑦 such that 𝐿𝐿𝐿𝐿 = 𝑏𝑏 Eq. 4

• Then solving 𝑈𝑈𝑈𝑈 = 𝑦𝑦 Eq. 5
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•What is the advantage of breaking up one linear set into two 

successive ones?

•Eq. 4 can be solved by forward substitution as follows

•𝑦𝑦1 = 𝑏𝑏1
𝛼𝛼11

and 𝑦𝑦𝑖𝑖 = 1
𝛼𝛼𝑖𝑖𝑖𝑖

[𝑏𝑏𝑖𝑖 − ∑𝑗𝑗=1𝑖𝑖−1 𝛼𝛼𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗] 𝑖𝑖 = 2,3, … ,𝑁𝑁 Eq. 6

•After that Eq. 5 can be solved by back substitution

•𝑥𝑥𝑁𝑁= 𝑦𝑦𝑁𝑁
𝛽𝛽𝑁𝑁𝑁𝑁

and 𝑥𝑥𝑖𝑖 = 1
𝛽𝛽𝑖𝑖𝑖𝑖

[𝑦𝑦𝑖𝑖 − ∑𝑗𝑗=𝑖𝑖+1𝑁𝑁 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗] 𝑖𝑖 = 𝑁𝑁,𝑁𝑁 − 1, … , 1 Eq. 7
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•How can we solve for 𝐿𝐿 and 𝑈𝑈, given 𝐴𝐴?

•First, we write out the 𝑖𝑖, 𝑗𝑗𝑡𝑡𝑡 component of Eq. 1

•𝛼𝛼𝑖𝑖𝑖𝛽𝛽1𝑗𝑗 + ⋯+ 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 + ⋯+ 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑁𝑁𝑁𝑁 = 𝑎𝑎𝑖𝑖𝑖𝑖

• The number of terms in the sum depends on whether 𝑖𝑖 is smaller or 𝑗𝑗.

• Three cases will be there:

• 𝑖𝑖 < 𝑗𝑗: 𝛼𝛼𝑖𝑖𝑖𝛽𝛽1𝑗𝑗 + 𝛼𝛼𝑖𝑖2𝛽𝛽2𝑗𝑗 … + 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 Eq. 8

• 𝑖𝑖 = 𝑗𝑗: 𝛼𝛼𝑖𝑖𝑖𝛽𝛽1𝑗𝑗 + 𝛼𝛼𝑖𝑖𝑖𝛽𝛽2𝑗𝑗 … + 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑖𝑖 Eq. 9

• 𝑖𝑖 > 𝑗𝑗: 𝛼𝛼𝑖𝑖𝑖𝛽𝛽1𝑗𝑗 + 𝛼𝛼𝑖𝑖𝑖𝛽𝛽2𝑗𝑗 … + 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑖𝑖 Eq. 10



Department of Computer 
Science  and Engineering

Crout’s algorithm
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•How to Find the Inverse of 𝑁𝑁 × 𝑁𝑁 Matrix?

•Compute the determinant of the given matrix

•Calculate the determinant of N − 1 × 𝑁𝑁 − 1 minor matrices

•Formulate the matrix of cofactors

• Take the transpose of the cofactor matrix to get the adjugate matrix

•Divide each term of the adjugate matrix by the determinant

•𝐴𝐴−1 = 1
det 𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴)
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Inverse of Matrix

•𝐴𝐴𝐴𝐴−1 = 𝐼𝐼

•𝐴𝐴𝐴𝐴 = 𝐼𝐼 where 𝐵𝐵 = 𝐴𝐴−1

•We know 𝐴𝐴 = 𝐿𝐿𝐿𝐿, we have 𝐼𝐼 and we must find out 𝐵𝐵

•Find out 𝐵𝐵 column wise 

•𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐼𝐼

•𝑈𝑈𝑈𝑈 = 𝑌𝑌

•𝐿𝐿𝐿𝐿 = 𝐼𝐼
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Cholesky Decomposition

•The Cholesky decomposition or Cholesky factorization is a decomposition of 

a symmetric, positive-definite matrix into the product of a lower triangular 

matrix and its conjugate transpose. 

•The Cholesky decomposition is roughly twice as efficient as the 𝐿𝐿𝐿𝐿

decomposition for solving systems of linear equations.

•Suppose we can write the matrix 𝐴𝐴𝑁𝑁𝑁𝑁 as a product of two matrices that is 

𝐴𝐴 = 𝐿𝐿𝐿𝐿𝑇𝑇 Eq. 1 where 𝐿𝐿 is lower triangular and 𝐿𝐿𝑇𝑇 is its transpose.
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•We can use a decomposition to solve the linear set 𝐴𝐴𝐴𝐴 = 𝑏𝑏 Eq. 2

•𝐴𝐴𝐴𝐴 = 𝐿𝐿𝐿𝐿𝑇𝑇𝑋𝑋 = 𝐿𝐿 𝐿𝐿𝑇𝑇𝑋𝑋 = 𝐿𝐿𝐿𝐿 = 𝐵𝐵 Eq.3

•First solving for the vector 𝑌𝑌 such that 𝐿𝐿𝐿𝐿 = 𝐵𝐵 Eq. 4

•Then solving 𝐿𝐿𝑇𝑇𝑋𝑋 = 𝑌𝑌 Eq. 5

•𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 − ∑𝑘𝑘=1𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖2
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