ALGORITHMS ANALYSIS AND DESIGN LAB

Paper Code: ETCS-351 L T/P C
Paper: Algorithms Analysis and Design Lab 0 2 1

List of Experiments:

- 1. To implement following algorithm using array as a data structure and analyse its time complexity.
 - a. Merge sort
 - b. Quick sort
 - c. Bubble sort
 - d. Bucket sort
 - e. Radix sort
 - f. Shell sort
 - g. Selection sort
 - h. Heap sort
- 2. To implement Linear search and Binary search and analyse its time complexity.
- 3. To implement Matrix Multiplication and analyse its time complexity.
- 4. To implement Longest Common Subsequence problem and analyse its time complexity.
- 5. To implement Optimal Binary Search Tree problem and analyse its time complexity.
- 6. To implement Huffman Coding and analyse its time complexity.
- 7. To implement Dijkstra's algorithm and analyse its time complexity.
- 8. To implement Bellman Ford algorithm and analyse its time complexity.
- To implement naïve String Matching algorithm, Rabin Karp algorithm and Knuth Morris Pratt algorithm and analyse its time complexity.

NOTE:- At least 8 Experiments out of the list must be done in the semester.

AMITY SCHOOL OF ENGINEERING & TECHNOLOGY Algorithms Design and Analysis Lab (ETCS-351)

Semester – V Credit - 1

- 1. Implement Linear search and Binary search and analyze its time complexity.
- 2. Implement Bubble sort, Insertion sort and Selection sort algorithm using array as a data structure and analyze its time complexity.
- 3. Implement Quick sort, Merge sort and Heap sort algorithm using array as a data structure and analyze its time complexity.
- 4. Implement Matrix Multiplication and analyze its time complexity.
- 5. Implement Matrix Chain Multiplication and analyze its time complexity.
- 6. Implement Longest Common Subsequence problem and analyze its time complexity.
- 7. Implement Optimal Binary Search Tree problem and analyze its time complexity.
- 8. Implement 0-1 and fractional Knapsack problem and analyze its time complexity.
- 9. Implement Huffman Coding and analyze its time complexity.
- 10. Implement Dijkstra's algorithm and analyze its time complexity.
- 11. Implement Bellman Ford algorithm and analyze its time complexity.
- 12. Implement naïve String Matching algorithm, Rabin Karp algorithm and Knuth Morris Pratt algorithm and analyze its time complexity.