Department of Computer Science and Engineering

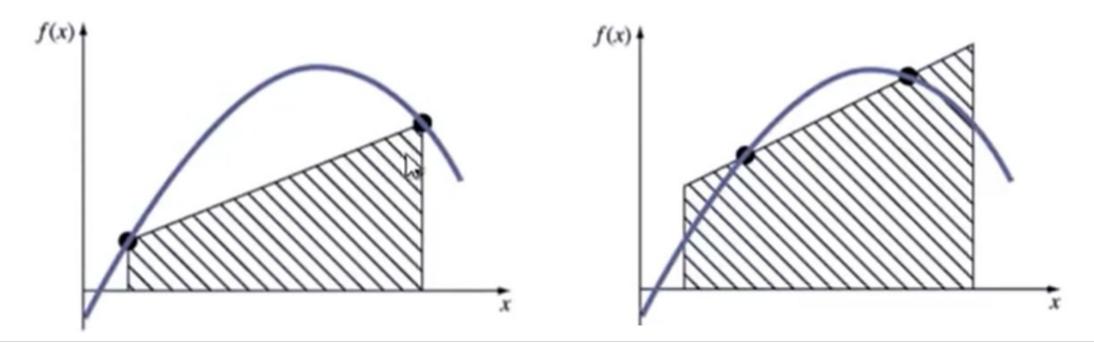
# Applied Probability and Statistics

Module-4, Lecture-1



- We will discuss:
- What is Gaussian quadrature
- The conceptual basis for Gauss quadrature
- How Gauss quadrature constants can be determined
- Use Gauss quadrature to calculate the integral of a function

- Evaluate the area under a straight line by joining any two points on a curve rather than simply choosing the endpoints.
- The key is to choose the line that balances the positive and negative errors.



- The Gaussian quadrature method is an approximate method of calculation of a certain integral  $I = \int_a^b f(x) dx$
- By replacing the variables  $x = \frac{(b-a)}{2}t + \frac{(b+a)}{2}$ ,  $dx = \frac{(b-a)}{2}dt$  the desired integral is reduced to the form  $I = \int_{-1}^{1} f(\frac{(b-a)}{2}t + \frac{(b+a)}{2})\frac{(b-a)}{2}dt$



- The Gaussian quadrature formula is  $\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} A_i f(x_i)$
- The nodes  $x_i$  of the Gaussian quadrature formula are the roots of a Legendre polynomial  $P_n(x)$  of degree n.
- The Legendre polynomial has exactly n real different roots in the interval (-1,1).
- The weights  $A_i$  of the Gaussian quadrature formula are defined by

• 
$$A_i = \frac{2}{(1-x_i^2)[P'_n(x_i)]^2}$$



| # Points | Weighting Factors, $c_i$                                                                                        | Function Arguments, $x_i$                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> | $c_0 = 1.0$ $c_1 = 1.0$                                                                                         | $x_0 = -1/\sqrt{3}$ $x_1 = 1/\sqrt{3}$                                                                                                                    |
| 3        | $c_0 = 5/9$ $c_1 = 8/9$ $c_2 = 5/9$                                                                             | $x_0 = -\sqrt{3/5}$ $x_1 = 0.0$ $x_2 = \sqrt{3/5}$                                                                                                        |
| 4        | $c_0 = (18 - \sqrt{30})/36$ $c_1 = (18 + \sqrt{30})/36$ $c_2 = (18 + \sqrt{30})/36$ $c_3 = (18 - \sqrt{30})/36$ | $x_0 = -\sqrt{525 + 70\sqrt{30}} / 35$ $x_1 = -\sqrt{525 - 70\sqrt{30}} / 35$ $x_2 = \sqrt{525 - 70\sqrt{30}} / 35$ $x_3 = \sqrt{525 + 70\sqrt{30}} / 35$ |

Department of Computer Science and Engineering

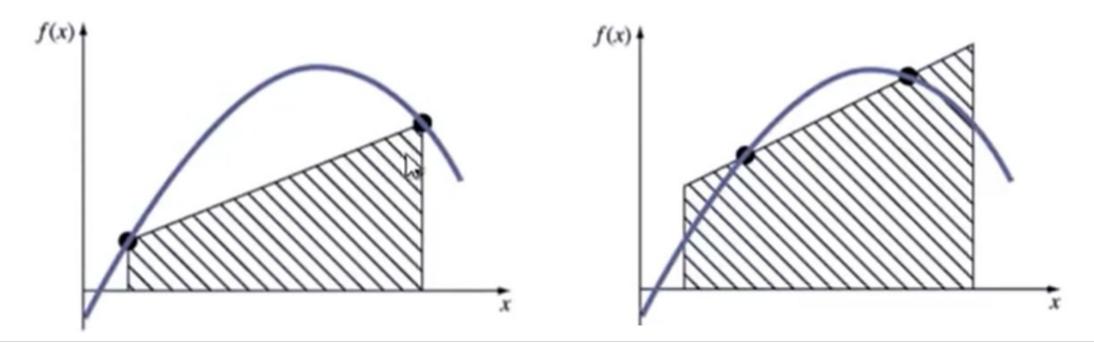
## Applied Probability and Statistics

Module-4, Lecture-2



- We will discuss:
- What is Gaussian quadrature
- The conceptual basis for Gauss quadrature
- How Gauss quadrature constants can be determined
- Use Gauss quadrature to calculate the integral of a function

- Evaluate the area under a straight line by joining any two points on a curve rather than simply choosing the endpoints.
- The key is to choose the line that balances the positive and negative errors.



- The Gaussian quadrature method is an approximate method of calculation of a certain integral  $I = \int_a^b f(x) dx$
- By replacing the variables  $x = \frac{(b-a)}{2}t + \frac{(b+a)}{2}$ ,  $dx = \frac{(b-a)}{2}dt$  the desired integral is reduced to the form  $I = \int_{-1}^{1} f(\frac{(b-a)}{2}t + \frac{(b+a)}{2})\frac{(b-a)}{2}dt$



- The Gaussian quadrature formula is  $\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} A_i f(x_i)$
- The nodes  $x_i$  of the Gaussian quadrature formula are the roots of a Legendre polynomial  $P_n(x)$  of degree n.
- The Legendre polynomial has exactly n real different roots in the interval (-1,1).
- The weights  $A_i$  of the Gaussian quadrature formula are defined by

• 
$$A_i = \frac{2}{(1-x_i^2)[P'_n(x_i)]^2}$$



| # Points | Weighting Factors, $c_i$                                                                                        | Function Arguments, $x_i$                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> | $c_0 = 1.0$ $c_1 = 1.0$                                                                                         | $x_0 = -1/\sqrt{3}$ $x_1 = 1/\sqrt{3}$                                                                                                                    |
| 3        | $c_0 = 5/9$ $c_1 = 8/9$ $c_2 = 5/9$                                                                             | $x_0 = -\sqrt{3/5}$ $x_1 = 0.0$ $x_2 = \sqrt{3/5}$                                                                                                        |
| 4        | $c_0 = (18 - \sqrt{30})/36$ $c_1 = (18 + \sqrt{30})/36$ $c_2 = (18 + \sqrt{30})/36$ $c_3 = (18 - \sqrt{30})/36$ | $x_0 = -\sqrt{525 + 70\sqrt{30}} / 35$ $x_1 = -\sqrt{525 - 70\sqrt{30}} / 35$ $x_2 = \sqrt{525 - 70\sqrt{30}} / 35$ $x_3 = \sqrt{525 + 70\sqrt{30}} / 35$ |



# Applied Probability and Statistics

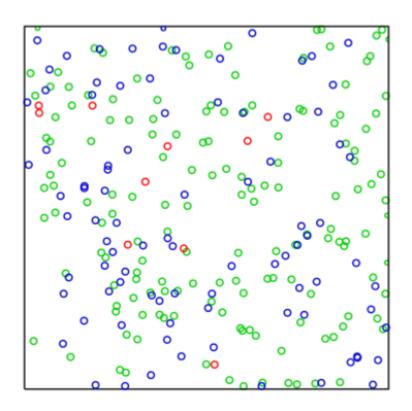
Module-4, Lecture-3

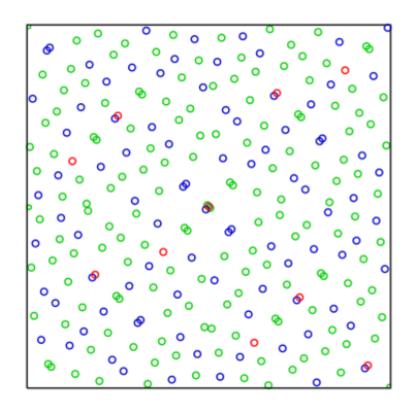


- The quasi-Monte Carlo method is a method for numerical integration and solving problems using low-discrepancy sequences, also called quasi-random sequences or sub-random sequences.
- This contrasts with the regular Monte Carlo method or Monte Carlo integration, which are based on sequences of pseudorandom numbers.
- Monte Carlo and quasi-Monte Carlo methods are stated in a similar way.



- Pseudorandom sequence (Fig: Left)
- A Sobol sequence of low-discrepancy quasi-random numbers







- The problem is to approximate the integral of a function f as the average of the function evaluated at a set of points  $x_1, x_2, ..., x_N$
- $\bullet \int_{[0,1]^S} f(u) du \approx \frac{1}{N} \sum_{i=1}^N f(x_i)$
- We are integrating over the s-dimensional unit cube, so each  $x_i$  is a vector of s elements.
- The difference between quasi-Monte Carlo and Monte Carlo is the way the  $x_i$  is chosen.
- Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a pseudorandom sequence.



- The advantage of using low-discrepancy sequences is a faster rate of convergence.
- Quasi-Monte Carlo has a rate of convergence close to  $O(\frac{1}{N})$ , whereas the rate for the Monte Carlo method is  $O(\frac{1}{\sqrt{N}})$
- The Quasi-Monte Carlo method recently became popular in the area of mathematical finance or computational finance.
- In these areas, high-dimensional numerical integrals, where the integral should be evaluated within a threshold  $\varepsilon$ , occur frequently.
- Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in these situations.

### **Approximation error**



- The approximation error of the quasi-Monte Carlo method is bounded by a term proportional to the discrepancy of the set  $x_1, \dots, x_N$ .
- Specifically, the Koksma
   –Hlawka inequality states that the error
- $\varepsilon = |\int_{[0,1]^s} f(u) du \approx \frac{1}{N} \sum_{i=1}^N f(x_i)|$  is bounded by  $|\varepsilon| \leq V(f) D_N^*$
- Where V(f) is the Hardy–Krause variation of the function f and  $D_N^*$  is the called star discrepancy of the set  $x_1, \dots, x_N$  and is defined as

• 
$$D_N^* = \sup_{Q \subset [0,1]^s} \left| \frac{\text{No of points in } Q}{N} - Volume(Q) \right|$$

- Where Q is a rectangular solid in  $[0,1]^s$  with sides parallel to the coordinate axes.
- The inequality  $|\varepsilon| \leq V(f)D_N^*$  can be used to show that the error of the approximation by the quasi-Monte Carlo method is  $O(\frac{(\log N)^S}{N})$ , whereas the Monte Carlo method has a probabilistic error of  $O(\frac{1}{\sqrt{N}})$
- We can only state the upper bound of the approximation error, the convergence rate of quasi-Monte Carlo method in practice is usually much faster than its theoretical bound.

- In general, the accuracy of the quasi-Monte Carlo method increases faster than that of the Monte Carlo method.
- However, this advantage is only guaranteed if *N* is large enough and if the variation is finite.

## **Drawbacks of quasi-Monte Carlo**

- In order for  $O(\frac{(\log N)^S}{N})$  to be smaller than  $O(\frac{1}{\sqrt{N}})$ , s needs to be small and N needs to be large e.g.,  $N > 2^s$ . For large s and practical N values, the discrepancy of a point set from a low-discrepancy generator might be not smaller than for a random set.
- For many functions arising in practice,  $V(f) = \infty$ , e.g., if Gaussian variables are used.
- We only know an upper bound on the error and it is difficult to compute  $D_N^*$  and V(f).



# Applied Probability and Statistics

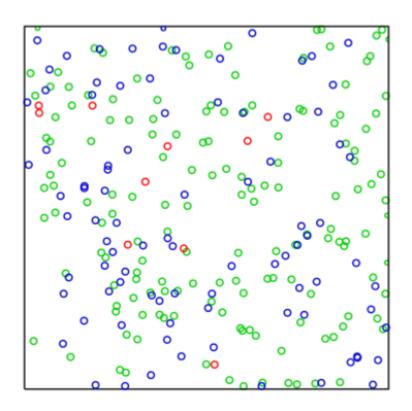
Module-4, Lecture-4

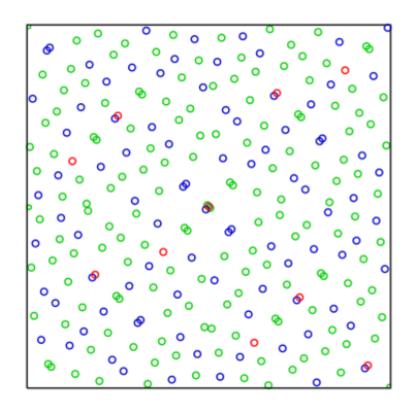


- The quasi-Monte Carlo method is a method for numerical integration and solving problems using low-discrepancy sequences, also called quasi-random sequences or sub-random sequences.
- This contrasts with the regular Monte Carlo method or Monte Carlo integration, which are based on sequences of pseudorandom numbers.
- Monte Carlo and quasi-Monte Carlo methods are stated in a similar way.



- Pseudorandom sequence (Fig: Left)
- A Sobol sequence of low-discrepancy quasi-random numbers







- The problem is to approximate the integral of a function f as the average of the function evaluated at a set of points  $x_1, x_2, ..., x_N$
- $\bullet \int_{[0,1]^S} f(u) du \approx \frac{1}{N} \sum_{i=1}^N f(x_i)$
- We are integrating over the s-dimensional unit cube, so each  $x_i$  is a vector of s elements.
- The difference between quasi-Monte Carlo and Monte Carlo is the way the  $x_i$  is chosen.
- Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a pseudorandom sequence.



- The advantage of using low-discrepancy sequences is a faster rate of convergence.
- Quasi-Monte Carlo has a rate of convergence close to  $O(\frac{1}{N})$ , whereas the rate for the Monte Carlo method is  $O(\frac{1}{\sqrt{N}})$
- The Quasi-Monte Carlo method recently became popular in the area of mathematical finance or computational finance.
- In these areas, high-dimensional numerical integrals, where the integral should be evaluated within a threshold  $\varepsilon$ , occur frequently.
- Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in these situations.

### **Approximation error**



- The approximation error of the quasi-Monte Carlo method is bounded by a term proportional to the discrepancy of the set  $x_1, \dots, x_N$ .
- Specifically, the Koksma

  Hlawka inequality states that the error
- $\varepsilon = |\int_{[0,1]^s} f(u) du \frac{1}{N} \sum_{i=1}^N f(x_i)|$  is bounded by  $|\varepsilon| \le V(f) D_N^*$
- Where V(f) is the Hardy–Krause variation of the function f and  $D_N^*$  is the called star discrepancy of the set  $x_1, ..., x_N$  and is defined as

• 
$$D_N^* = \sup_{Q \subset [0,1]^s} \left| \frac{\text{No of points in } Q}{N} - Volume(Q) \right|$$

- Where Q is a rectangular solid in  $[0,1]^s$  with sides parallel to the coordinate axes.
- The inequality  $|\varepsilon| \leq V(f)D_N^*$  can be used to show that the error of the approximation by the quasi-Monte Carlo method is  $O(\frac{(\log N)^S}{N})$ , whereas the Monte Carlo method has a probabilistic error of  $O(\frac{1}{\sqrt{N}})$
- We can only state the upper bound of the approximation error, the convergence rate of quasi-Monte Carlo method in practice is usually much faster than its theoretical bound.

- In general, the accuracy of the quasi-Monte Carlo method increases faster than that of the Monte Carlo method.
- However, this advantage is only guaranteed if *N* is large enough and if the variation is finite.

## **Drawbacks of quasi-Monte Carlo**

- In order for  $O(\frac{(\log N)^S}{N})$  to be smaller than  $O(\frac{1}{\sqrt{N}})$ , s needs to be small and N needs to be large e.g.,  $N > 2^s$ . For large s and practical N values, the discrepancy of a point set from a low-discrepancy generator might be not smaller than for a random set.
- For many functions arising in practice,  $V(f) = \infty$ , e.g., if Gaussian variables are used.
- We only know an upper bound on the error and it is difficult to compute  $D_N^*$  and V(f).

Department of Computer Science and Engineering

## Applied Probability and Statistics

Module-4, Lecture-5



- Expectation Propagation (EP) unifies two previous techniques: assumeddensity filtering (ADF), an extension of the Kalman filter, and loopy belief propagation (LBP), an extension of belief propagation in Bayesian networks.
- Loopy belief propagation, because it propagates exact belief states, is useful for a limited class of belief networks, such as those which are purely discrete.
- Expectation Propagation approximates the belief states by only retaining expectations, such as mean and variance, and iterates until these expectations are consistent throughout the network.

- This makes it applicable to hybrid networks with discrete and continuous nodes.
- Experiments with Gaussian mixture models show Expectation Propagation to be convincingly better than methods with similar computational cost:
   Laplace's method, variational Bayes, and Monte Carlo.
- Expectation Propagation also provides an efficient algorithm for training Bayes point machine classifiers.

## **ADF** algorithm



- 1. Initialize  $\mathbf{m}_x = \mathbf{0}$ ,  $v_x = 100$  (the prior). Initialize s = 1 (the scale factor).
- 2. For each data point  $\mathbf{y}_i$ , update  $(\mathbf{m}_x, v_x, s)$  according to

$$s = s^{\setminus i} \times Z_i$$

$$r_i = 1 - \frac{1}{Z_i} w \mathcal{N}(\mathbf{y}_i; \mathbf{0}, 10\mathbf{I})$$

$$\mathbf{m}_{x} = \mathbf{m}_{x}^{\setminus i} + v_{x}^{\setminus i} r_{i} \frac{\mathbf{y}_{i} - \mathbf{m}_{x}^{\setminus i}}{v_{x}^{\setminus i} + 1}$$

$$v_x = v_x^{\setminus i} - r_i \frac{(v_x^{\setminus i})^2}{v_x^{\setminus i} + 1} + r_i (1 - r_i) \frac{(v_x^{\setminus i})^2 ||\mathbf{y}_i - \mathbf{m}_x^{\setminus i}||^2}{d(v_x^{\setminus i} + 1)^2}$$



- 1. Initialize the term approximations  $\tilde{t}_i$
- 2. Compute the posterior for **x** from the product of  $\tilde{t}_i$ :

$$q(\mathbf{x}) = \frac{\prod_{i} \tilde{t}_{i}(\mathbf{x})}{\int \prod_{i} \tilde{t}_{i}(\mathbf{x}) d\mathbf{x}}$$
(9)

- 3. Until all  $\tilde{t}_i$  converge:
  - (a) Choose a  $\tilde{t}_i$  to refine
  - (b) Remove  $\tilde{t}_i$  from the posterior to get an 'old' posterior  $q^{i}(\mathbf{x})$ , by dividing and normalizing:

$$q^{\setminus i}(\mathbf{x}) \propto \frac{q(\mathbf{x})}{\tilde{t}_i(\mathbf{x})}$$
 (10)



- (c) Combine  $q^{\setminus i}(\mathbf{x})$  and  $t_i(\mathbf{x})$  and minimize KL-divergence to get a new posterior  $q(\mathbf{x})$  with normalizer  $Z_i$ .
- (d) Update  $\tilde{t}_i = Z_i q(\mathbf{x})/q^{i}(\mathbf{x})$ .
- 4. Use the normalizing constant of  $q(\mathbf{x})$  as an approximation to p(D):

$$p(D) \approx \int \prod_{i} \tilde{t}_{i}(\mathbf{x}) d\mathbf{x}$$
 (11)

Department of Computer Science and Engineering

## Applied Probability and Statistics

Module-4, Lecture-6



- Expectation Propagation (EP) unifies two previous techniques: assumeddensity filtering (ADF), an extension of the Kalman filter, and loopy belief propagation (LBP), an extension of belief propagation in Bayesian networks.
- Loopy belief propagation, because it propagates exact belief states, is useful for a limited class of belief networks, such as those which are purely discrete.
- Expectation Propagation approximates the belief states by only retaining expectations, such as mean and variance, and iterates until these expectations are consistent throughout the network.

- This makes it applicable to hybrid networks with discrete and continuous nodes.
- Experiments with Gaussian mixture models show Expectation Propagation to be convincingly better than methods with similar computational cost:
   Laplace's method, variational Bayes, and Monte Carlo.
- Expectation Propagation also provides an efficient algorithm for training Bayes point machine classifiers.

## **ADF** algorithm



- 1. Initialize  $\mathbf{m}_x = \mathbf{0}$ ,  $v_x = 100$  (the prior). Initialize s = 1 (the scale factor).
- 2. For each data point  $\mathbf{y}_i$ , update  $(\mathbf{m}_x, v_x, s)$  according to

$$s = s^{\setminus i} \times Z_i$$

$$r_i = 1 - \frac{1}{Z_i} w \mathcal{N}(\mathbf{y}_i; \mathbf{0}, 10\mathbf{I})$$

$$\mathbf{m}_{x} = \mathbf{m}_{x}^{\setminus i} + v_{x}^{\setminus i} r_{i} \frac{\mathbf{y}_{i} - \mathbf{m}_{x}^{\setminus i}}{v_{x}^{\setminus i} + 1}$$

$$v_x = v_x^{\setminus i} - r_i \frac{(v_x^{\setminus i})^2}{v_x^{\setminus i} + 1} + r_i (1 - r_i) \frac{(v_x^{\setminus i})^2 ||\mathbf{y}_i - \mathbf{m}_x^{\setminus i}||^2}{d(v_x^{\setminus i} + 1)^2}$$



- 1. Initialize the term approximations  $\tilde{t}_i$
- 2. Compute the posterior for **x** from the product of  $\tilde{t}_i$ :

$$q(\mathbf{x}) = \frac{\prod_{i} \tilde{t}_{i}(\mathbf{x})}{\int \prod_{i} \tilde{t}_{i}(\mathbf{x}) d\mathbf{x}}$$
(9)

- 3. Until all  $\tilde{t}_i$  converge:
  - (a) Choose a  $\tilde{t}_i$  to refine
  - (b) Remove  $\tilde{t}_i$  from the posterior to get an 'old' posterior  $q^{i}(\mathbf{x})$ , by dividing and normalizing:

$$q^{\setminus i}(\mathbf{x}) \propto \frac{q(\mathbf{x})}{\tilde{t}_i(\mathbf{x})}$$
 (10)



- (c) Combine  $q^{\setminus i}(\mathbf{x})$  and  $t_i(\mathbf{x})$  and minimize KL-divergence to get a new posterior  $q(\mathbf{x})$  with normalizer  $Z_i$ .
- (d) Update  $\tilde{t}_i = Z_i q(\mathbf{x})/q^{i}(\mathbf{x})$ .
- 4. Use the normalizing constant of  $q(\mathbf{x})$  as an approximation to p(D):

$$p(D) \approx \int \prod_{i} \tilde{t}_{i}(\mathbf{x}) d\mathbf{x}$$
 (11)