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* We will discuss:

* What is Gaussian quadrature

* The conceptual basis for Gauss quadrature

* How Gauss quadrature constants can be determined

* Use Gauss quadrature to calculate the integral of a function
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* Evaluate the area under a straight line by joining any two points on a curve

rather than simply choosing the endpoints.

* The key is to choose the line that balances the positive and negative errors.

f(x)4 f(x)
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* The Gaussian quadrature method is an approximate method of calculation of
a certain integral I = fff(x)dx

(b— a) (b+a) (b a)

* By replacing the variables x = t + , dx dt the desired

(b— a) (b+a)) (b—a) dt

integral is reduced to the form I —f f( > >
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* The Gaussian quadrature formula is f_llf(x)dx = D1 Aif (x)

* The nodes x; of the Gaussian quadrature formula are the roots of a

Legendre polynomial P, (x) of degree n.

* The Legendre polynomial has exactly n real different roots in the interval
(—1,1).

* The weights A; of the Gaussian quadrature formula are defined by
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* We will discuss:

* What is Gaussian quadrature

* The conceptual basis for Gauss quadrature

* How Gauss quadrature constants can be determined

* Use Gauss quadrature to calculate the integral of a function
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* Evaluate the area under a straight line by joining any two points on a curve

rather than simply choosing the endpoints.

* The key is to choose the line that balances the positive and negative errors.
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* The Gaussian quadrature method is an approximate method of calculation of
a certain integral I = fff(x)dx

(b— a) (b+a) (b a)

* By replacing the variables x = t + , dx dt the desired

(b— a) (b+a)) (b—a) dt

integral is reduced to the form I —f f( > >
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* The Gaussian quadrature formula is f_llf(x)dx = D1 Aif (x)

* The nodes x; of the Gaussian quadrature formula are the roots of a

Legendre polynomial P, (x) of degree n.

* The Legendre polynomial has exactly n real different roots in the interval
(—1,1).

* The weights A; of the Gaussian quadrature formula are defined by
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* The quasi-Monte Carlo method is a method for numerical integration and
solving problems using low-discrepancy sequences ,also called quasi-

random sequences or sub-random sequences.

* This contrasts with the regular Monte Carlo method or Monte Carlo

integration, which are based on sequences of pseudorandom numbers.

* Monte Carlo and quasi-Monte Carlo methods are stated in a similar way.
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* Pseudorandom sequence (Fig: Left)
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* A Sobol sequence of low-discrepancy quasi-random numbers
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* The problem is to approximate the integral of a function f as the average of the
function evaluated at a set of points x, x5, ..., Xy

* Jioaps fdu =T £ (x;)

* We are integrating over the s-dimensional unit cube, so each x; is a vector of s
elements.

* The difference between quasi-Monte Carlo and Monte Carlo is the way the x; is
chosen.

* Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence,
the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a
pseudorandom sequence.
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* The advantage of using low-discrepancy sequences is a faster rate of convergence.

* Quasi-Monte Carlo has a rate of convergence close to 0(%), whereas the rate for

the Monte Carlo method is 0(\/%)

* The Quasi-Monte Carlo method recently became popular in the area of

mathematical finance or computational finance.

* |n these areas, high-dimensional numerical integrals, where the integral should be

evaluated within a threshold &, occur frequently.

* Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in

these situations.
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* The approximation error of the quasi-Monte Carlo method is bounded by a

term proportional to the discrepancy of the set x4, .... xy.

* Specifically, the Koksma—Hlawka inequality states that the error

ve=| fjo s f)du = T XL, £(x;)] is bounded by |e| < V(f)Dj

* Where V(f) is the Hardy—Krause variation of the function f and Dy, is the

called star discrepancy of the set x4, ..., x,y and is defined as

No of points in Q

— Volume(Q)|
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*Where Q is a rectangular solid in [0,1]° with sides parallel to the coordinate

dXeEs.

* The inequality || < V(f)Dy can be used to show that the error of the

(log N)®
N

approximation by the quasi-Monte Carlo method is O( ), whereas the

Monte Carlo method has a probabilistic error of 0(\/%)

* We can only state the upper bound of the approximation error, the
convergence rate of quasi-Monte Carlo method in practice is usually much

faster than its theoretical bound.
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*In general, the accuracy of the quasi-Monte Carlo method increases faster
than that of the Monte Carlo method.

* However, this advantage is only guaranteed if N is large enough and if the

variation is finite.
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N

*In order for O( ) to be smaller than 0(\/%), s needs to be small and N

needs to be large e.g., N > 2°. For large s and practical N values, the
discrepancy of a point set from a low-discrepancy generator might be not

smaller than for a random set.

* For many functions arising in practice, V(f) = o, e.g., if Gaussian variables

are used.

* We only know an upper bound on the error and it is difficult to compute Dy
and V(f).



AMITY

UNIVERSITY

quasi-Monte Carlo

Department of Computer
Science and Engineering

Applied Probability and
Staftistics

Module-4, Lecture-4

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP



- Department of Computer
UANIBK{{‘}{’SII"X’ quasl Monte Carlo Science and Engineering

* The quasi-Monte Carlo method is a method for numerical integration and
solving problems using low-discrepancy sequences ,also called quasi-

random sequences or sub-random sequences.

* This contrasts with the regular Monte Carlo method or Monte Carlo

integration, which are based on sequences of pseudorandom numbers.

* Monte Carlo and quasi-Monte Carlo methods are stated in a similar way.
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* A Sobol sequence of low-discrepancy quasi-random numbers
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* The problem is to approximate the integral of a function f as the average of the
function evaluated at a set of points x, x5, ..., Xy

* Jioaps fdu =T £ (x;)

* We are integrating over the s-dimensional unit cube, so each x; is a vector of s
elements.

* The difference between quasi-Monte Carlo and Monte Carlo is the way the x; is
chosen.

* Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence,
the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a
pseudorandom sequence.
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* The advantage of using low-discrepancy sequences is a faster rate of convergence.

* Quasi-Monte Carlo has a rate of convergence close to 0(%), whereas the rate for

the Monte Carlo method is 0(\/%)

* The Quasi-Monte Carlo method recently became popular in the area of

mathematical finance or computational finance.

* |n these areas, high-dimensional numerical integrals, where the integral should be

evaluated within a threshold &, occur frequently.

* Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in

these situations.
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* The approximation error of the quasi-Monte Carlo method is bounded by a

term proportional to the discrepancy of the set x4, .... xy.

* Specifically, the Koksma—Hlawka inequality states that the error

*e = | [ s fQ)du — LTIy £(x)| is bounded by le| < V(f)Dj

* Where V(f) is the Hardy—Krause variation of the function f and Dy, is the

called star discrepancy of the set x4, ..., x,y and is defined as

No of points in Q

— Volume(Q)|
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*Where Q is a rectangular solid in [0,1]° with sides parallel to the coordinate

dXeEs.

* The inequality || < V(f)Dy can be used to show that the error of the

(log N)®
N

approximation by the quasi-Monte Carlo method is O( ), whereas the

Monte Carlo method has a probabilistic error of 0(\/%)

* We can only state the upper bound of the approximation error, the
convergence rate of quasi-Monte Carlo method in practice is usually much

faster than its theoretical bound.
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*In general, the accuracy of the quasi-Monte Carlo method increases faster
than that of the Monte Carlo method.

* However, this advantage is only guaranteed if N is large enough and if the

variation is finite.
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(log N)®
N

*In order for O( ) to be smaller than 0(\/%), s needs to be small and N

needs to be large e.g., N > 2°. For large s and practical N values, the
discrepancy of a point set from a low-discrepancy generator might be not

smaller than for a random set.

* For many functions arising in practice, V(f) = o, e.g., if Gaussian variables

are used.

* We only know an upper bound on the error and it is difficult to compute Dy
and V(f).
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* Expectation Propagation (EP) unifies two previous techniques: assumed-
density filtering (ADF), an extension of the Kalman filter, and loopy belief

propagation (LBP), an extension of belief propagation in Bayesian networks.

* Loopy belief propagation, because it propagates exact belief states, is useful

for a limited class of belief networks, such as those which are purely discrete.

* Expectation Propagation approximates the belief states by only retaining
expectations, such as mean and variance, and iterates until these

expectations are consistent throughout the network.
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* This makes it applicable to hybrid networks with discrete and continuous

nodes.

* Experiments with Gaussian mixture models show Expectation Propagation to
be convincingly better than methods with similar computational cost:

Laplace's method, variational Bayes, and Monte Carlo.

* Expectation Propagation also provides an efficient algorithm for training

Bayes point machine classifiers.
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1. Initialize m, = 0, v, = 100 (the prior). Initialize
s = 1 (the scale factor).

2. For each data point y;, update (m,, v,,, s) according

o
s = S\i X Zi
1 .
ri = 1——5wN(y;;0,10I)
Zi
o y—m)
m, = m,’ +uv'r E\i -
/U;T: + ]-
\7)2 \iy2 \Ni12
. Uy (BN . —1m,
Vo — ?};;E _ Ti ( ) + ?13(]. . T;)( ) ||}rl ||

v +1 d(vy’ + 1)
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. Initialize the term approximations ;

2. Compute the posterior for x from the product of t}-:
t;(x)
{;

(x)x >

I U ¢
q(x) I

3. Until all ¢; converge:

(a) Choose a t; to refine
(b) Remove #; from the posterior to get an ‘old’ pos-

terior ¢\(x), by dividing and normalizing:

q\i(x) X ?(X) (10)

ti(x)
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(¢) Combine ¢\i(x) and #;(x) and minimize KL-
divergence to get a new posterior ¢(x) with nor-
malizer Z,.

(d) Update f; = Ziq(x)/q\ (x).

4. Use the normalizing constant of ¢(x) as an approxi-
mation to p(D):

p(D) ﬁ/1__[&(35:)ahr (11)
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* Expectation Propagation (EP) unifies two previous techniques: assumed-
density filtering (ADF), an extension of the Kalman filter, and loopy belief

propagation (LBP), an extension of belief propagation in Bayesian networks.

* Loopy belief propagation, because it propagates exact belief states, is useful

for a limited class of belief networks, such as those which are purely discrete.

* Expectation Propagation approximates the belief states by only retaining
expectations, such as mean and variance, and iterates until these

expectations are consistent throughout the network.
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* This makes it applicable to hybrid networks with discrete and continuous

nodes.

* Experiments with Gaussian mixture models show Expectation Propagation to
be convincingly better than methods with similar computational cost:

Laplace's method, variational Bayes, and Monte Carlo.

* Expectation Propagation also provides an efficient algorithm for training

Bayes point machine classifiers.
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1. Initialize m, = 0, v, = 100 (the prior). Initialize
s = 1 (the scale factor).

2. For each data point y;, update (m,, v,,, s) according

o
s = S\i X Zi
1 .
ri = 1——5wN(y;;0,10I)
Zi
o y—m)
m, = m,’ +uv'r E\i -
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. Initialize the term approximations ;

2. Compute the posterior for x from the product of t}-:
t;(x)
{;

(x)x >

I U ¢
q(x) I

3. Until all ¢; converge:

(a) Choose a t; to refine
(b) Remove #; from the posterior to get an ‘old’ pos-

terior ¢\(x), by dividing and normalizing:

q\i(x) X ?(X) (10)

ti(x)
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(¢) Combine ¢\i(x) and #;(x) and minimize KL-
divergence to get a new posterior ¢(x) with nor-
malizer Z,.

(d) Update f; = Ziq(x)/q\ (x).

4. Use the normalizing constant of ¢(x) as an approxi-
mation to p(D):

p(D) ﬁ/1__[&(35:)ahr (11)
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