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• We will discuss:

• What is Gaussian quadrature

• The conceptual basis for Gauss quadrature

• How Gauss quadrature constants can be determined

• Use Gauss quadrature to calculate the integral of a function
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•Evaluate the area under a straight line by joining any two points on a curve 

rather than simply choosing the endpoints.

•The key is to choose the line that balances the positive and negative errors.
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Gaussian Quadrature

•The Gaussian quadrature method is an approximate method of calculation of 

a certain integral 𝐼𝐼 = ∫𝑎𝑎
𝑏𝑏 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

•By replacing the variables 𝑥𝑥 = (𝑏𝑏−𝑎𝑎)
2

𝑡𝑡 + (𝑏𝑏+𝑎𝑎)
2

, 𝑑𝑑𝑑𝑑 = 𝑏𝑏−𝑎𝑎
2

𝑑𝑑𝑑𝑑 the desired 

integral is reduced to the form 𝐼𝐼 = ∫−1
1 𝑓𝑓((𝑏𝑏−𝑎𝑎)

2
𝑡𝑡 + (𝑏𝑏+𝑎𝑎)

2
) 𝑏𝑏−𝑎𝑎

2
𝑑𝑑𝑡𝑡
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•The Gaussian quadrature formula is ∫−1
1 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∑𝑖𝑖=1𝑛𝑛 𝐴𝐴𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)

•The nodes 𝑥𝑥𝑖𝑖 of the Gaussian quadrature formula are the roots of a 

Legendre polynomial 𝑃𝑃𝑛𝑛(𝑥𝑥) of degree 𝑛𝑛. 

•The Legendre polynomial has exactly 𝑛𝑛 real different roots in the interval 

(−1,1). 

•The weights 𝐴𝐴𝑖𝑖 of the Gaussian quadrature formula are defined by

•𝐴𝐴𝑖𝑖 = 2

1−𝑥𝑥𝑖𝑖
2 𝑃𝑃𝑛𝑛′ 𝑥𝑥𝑖𝑖

2
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• We will discuss:

• What is Gaussian quadrature

• The conceptual basis for Gauss quadrature

• How Gauss quadrature constants can be determined

• Use Gauss quadrature to calculate the integral of a function
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•Evaluate the area under a straight line by joining any two points on a curve 

rather than simply choosing the endpoints.

•The key is to choose the line that balances the positive and negative errors.
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Gaussian Quadrature

•The Gaussian quadrature method is an approximate method of calculation of 

a certain integral 𝐼𝐼 = ∫𝑎𝑎
𝑏𝑏 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑

•By replacing the variables 𝑥𝑥 = (𝑏𝑏−𝑎𝑎)
2

𝑡𝑡 + (𝑏𝑏+𝑎𝑎)
2

, 𝑑𝑑𝑑𝑑 = 𝑏𝑏−𝑎𝑎
2

𝑑𝑑𝑑𝑑 the desired 

integral is reduced to the form 𝐼𝐼 = ∫−1
1 𝑓𝑓((𝑏𝑏−𝑎𝑎)

2
𝑡𝑡 + (𝑏𝑏+𝑎𝑎)

2
) 𝑏𝑏−𝑎𝑎

2
𝑑𝑑𝑡𝑡
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•The Gaussian quadrature formula is ∫−1
1 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∑𝑖𝑖=1𝑛𝑛 𝐴𝐴𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)

•The nodes 𝑥𝑥𝑖𝑖 of the Gaussian quadrature formula are the roots of a 

Legendre polynomial 𝑃𝑃𝑛𝑛(𝑥𝑥) of degree 𝑛𝑛. 

•The Legendre polynomial has exactly 𝑛𝑛 real different roots in the interval 

(−1,1). 

•The weights 𝐴𝐴𝑖𝑖 of the Gaussian quadrature formula are defined by

•𝐴𝐴𝑖𝑖 = 2

1−𝑥𝑥𝑖𝑖
2 𝑃𝑃𝑛𝑛′ 𝑥𝑥𝑖𝑖

2
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quasi-Monte Carlo

• The quasi-Monte Carlo method is a method for numerical integration and 

solving problems using low-discrepancy sequences ,also called quasi-

random sequences or sub-random sequences.

•This contrasts with the regular Monte Carlo method or Monte Carlo 

integration, which are based on sequences of pseudorandom numbers.

•Monte Carlo and quasi-Monte Carlo methods are stated in a similar way.
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•Pseudorandom sequence (Fig: Left)

•A Sobol sequence of low-discrepancy quasi-random numbers
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• The problem is to approximate the integral of a function 𝑓𝑓 as the average of the 
function evaluated at a set of points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁

• ∫0,1 𝑠𝑠 𝑓𝑓 𝑢𝑢 𝑑𝑑𝑑𝑑 ≈ 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓(𝑥𝑥𝑖𝑖)

• We are integrating over the s-dimensional unit cube, so each 𝑥𝑥𝑖𝑖 is a vector of s 
elements.

• The difference between quasi-Monte Carlo and Monte Carlo is the way the 𝑥𝑥𝑖𝑖 is 
chosen.

• Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, 
the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a 
pseudorandom sequence. 
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• The advantage of using low-discrepancy sequences is a faster rate of convergence.

• Quasi-Monte Carlo has a rate of convergence close to 𝑂𝑂(1
𝑁𝑁

), whereas the rate for 

the Monte Carlo method is 𝑂𝑂( 1
𝑁𝑁

)

• The Quasi-Monte Carlo method recently became popular in the area of 

mathematical finance or computational finance.

• In these areas, high-dimensional numerical integrals, where the integral should be 

evaluated within a threshold 𝜀𝜀, occur frequently. 

• Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in 

these situations.
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Approximation error

•The approximation error of the quasi-Monte Carlo method is bounded by a 

term proportional to the discrepancy of the set 𝑥𝑥1, … . 𝑥𝑥𝑁𝑁.

•Specifically, the Koksma–Hlawka inequality states that the error

• 𝜀𝜀 = |∫0,1 𝑠𝑠 𝑓𝑓 𝑢𝑢 𝑑𝑑𝑑𝑑 ≈ 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓 𝑥𝑥𝑖𝑖 | is bounded by 𝜀𝜀 ≤ 𝑉𝑉 𝑓𝑓 𝐷𝐷𝑁𝑁∗

•Where 𝑉𝑉(𝑓𝑓) is the Hardy–Krause variation of the function 𝑓𝑓 and 𝐷𝐷𝑁𝑁∗ is the 

called star discrepancy of the set 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 and is defined as

•𝐷𝐷𝑁𝑁∗ = sup
𝑄𝑄⊂ 0,1 𝑠𝑠

|𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑄𝑄
𝑁𝑁

− 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄)|
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•Where 𝑄𝑄 is a rectangular solid in 0,1 𝑠𝑠 with sides parallel to the coordinate 
axes.

•The inequality 𝜀𝜀 ≤ 𝑉𝑉 𝑓𝑓 𝐷𝐷𝑁𝑁∗ can be used to show that the error of the 

approximation by the quasi-Monte Carlo method is 𝑂𝑂( log 𝑁𝑁 𝑆𝑆

𝑁𝑁
), whereas the 

Monte Carlo method has a probabilistic error of 𝑂𝑂( 1
𝑁𝑁

)

•We can only state the upper bound of the approximation error, the 
convergence rate of quasi-Monte Carlo method in practice is usually much 
faster than its theoretical bound.
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• In general, the accuracy of the quasi-Monte Carlo method increases faster 

than that of the Monte Carlo method.

•However, this advantage is only guaranteed if 𝑁𝑁 is large enough and if the 

variation is finite.
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Drawbacks of quasi-Monte Carlo

• In order for 𝑂𝑂( log 𝑁𝑁 𝑆𝑆

𝑁𝑁
) to be smaller than 𝑂𝑂( 1

𝑁𝑁
), 𝑠𝑠 needs to be small and 𝑁𝑁

needs to be large e.g., 𝑁𝑁 > 2𝑠𝑠. For large 𝑠𝑠 and practical 𝑁𝑁 values, the 

discrepancy of a point set from a low-discrepancy generator might be not 

smaller than for a random set.

•For many functions arising in practice, 𝑉𝑉 𝑓𝑓 = ∞, e.g., if Gaussian variables 

are used.

•We only know an upper bound on the error and it is difficult to compute 𝐷𝐷𝑁𝑁∗

and 𝑉𝑉 𝑓𝑓 .
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quasi-Monte Carlo

• The quasi-Monte Carlo method is a method for numerical integration and 

solving problems using low-discrepancy sequences ,also called quasi-

random sequences or sub-random sequences.

•This contrasts with the regular Monte Carlo method or Monte Carlo 

integration, which are based on sequences of pseudorandom numbers.

•Monte Carlo and quasi-Monte Carlo methods are stated in a similar way.
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•Pseudorandom sequence (Fig: Left)

•A Sobol sequence of low-discrepancy quasi-random numbers
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• The problem is to approximate the integral of a function 𝑓𝑓 as the average of the 
function evaluated at a set of points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁

• ∫0,1 𝑠𝑠 𝑓𝑓 𝑢𝑢 𝑑𝑑𝑑𝑑 ≈ 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓(𝑥𝑥𝑖𝑖)

• We are integrating over the s-dimensional unit cube, so each 𝑥𝑥𝑖𝑖 is a vector of s 
elements.

• The difference between quasi-Monte Carlo and Monte Carlo is the way the 𝑥𝑥𝑖𝑖 is 
chosen.

• Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, 
the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a 
pseudorandom sequence. 
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• The advantage of using low-discrepancy sequences is a faster rate of convergence.

• Quasi-Monte Carlo has a rate of convergence close to 𝑂𝑂(1
𝑁𝑁

), whereas the rate for 

the Monte Carlo method is 𝑂𝑂( 1
𝑁𝑁

)

• The Quasi-Monte Carlo method recently became popular in the area of 

mathematical finance or computational finance.

• In these areas, high-dimensional numerical integrals, where the integral should be 

evaluated within a threshold 𝜀𝜀, occur frequently. 

• Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in 

these situations.
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Approximation error

•The approximation error of the quasi-Monte Carlo method is bounded by a 
term proportional to the discrepancy of the set 𝑥𝑥1, … . 𝑥𝑥𝑁𝑁.

•Specifically, the Koksma–Hlawka inequality states that the error

• 𝜀𝜀 = |∫0,1 𝑠𝑠 𝑓𝑓 𝑢𝑢 𝑑𝑑𝑑𝑑 − 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓 𝑥𝑥𝑖𝑖 | is bounded by 𝜀𝜀 ≤ 𝑉𝑉 𝑓𝑓 𝐷𝐷𝑁𝑁∗

•Where 𝑉𝑉(𝑓𝑓) is the Hardy–Krause variation of the function 𝑓𝑓 and 𝐷𝐷𝑁𝑁∗ is the 
called star discrepancy of the set 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 and is defined as

•𝐷𝐷𝑁𝑁∗ = sup
𝑄𝑄⊂ 0,1 𝑠𝑠

|𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑄𝑄
𝑁𝑁

− 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑄𝑄)|
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•Where 𝑄𝑄 is a rectangular solid in 0,1 𝑠𝑠 with sides parallel to the coordinate 
axes.

•The inequality 𝜀𝜀 ≤ 𝑉𝑉 𝑓𝑓 𝐷𝐷𝑁𝑁∗ can be used to show that the error of the 

approximation by the quasi-Monte Carlo method is 𝑂𝑂( log 𝑁𝑁 𝑆𝑆

𝑁𝑁
), whereas the 

Monte Carlo method has a probabilistic error of 𝑂𝑂( 1
𝑁𝑁

)

•We can only state the upper bound of the approximation error, the 
convergence rate of quasi-Monte Carlo method in practice is usually much 
faster than its theoretical bound.



Department of Computer 
Science  and Engineering

• In general, the accuracy of the quasi-Monte Carlo method increases faster 

than that of the Monte Carlo method.

•However, this advantage is only guaranteed if 𝑁𝑁 is large enough and if the 

variation is finite.
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Drawbacks of quasi-Monte Carlo

• In order for 𝑂𝑂( log 𝑁𝑁 𝑆𝑆

𝑁𝑁
) to be smaller than 𝑂𝑂( 1

𝑁𝑁
), 𝑠𝑠 needs to be small and 𝑁𝑁

needs to be large e.g., 𝑁𝑁 > 2𝑠𝑠. For large 𝑠𝑠 and practical 𝑁𝑁 values, the 

discrepancy of a point set from a low-discrepancy generator might be not 

smaller than for a random set.

•For many functions arising in practice, 𝑉𝑉 𝑓𝑓 = ∞, e.g., if Gaussian variables 

are used.

•We only know an upper bound on the error and it is difficult to compute 𝐷𝐷𝑁𝑁∗

and 𝑉𝑉 𝑓𝑓 .
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Expectation propagation

• Expectation Propagation (EP) unifies two previous techniques: assumed-

density filtering (ADF), an extension of the Kalman filter, and loopy belief 

propagation (LBP), an extension of belief propagation in Bayesian networks. 

•Loopy belief propagation, because it propagates exact belief states, is useful 

for a limited class of belief networks, such as those which are purely discrete. 

•Expectation Propagation approximates the belief states by only retaining 

expectations, such as mean and variance, and iterates until these 

expectations are consistent throughout the network. 
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•This makes it applicable to hybrid networks with discrete and continuous 

nodes. 

•Experiments with Gaussian mixture models show Expectation Propagation to 

be convincingly better than methods with similar computational cost: 

Laplace's method, variational Bayes, and Monte Carlo.

•Expectation Propagation also provides an efficient algorithm for training 

Bayes point machine classifiers.
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ADF algorithm
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Expectation propagation

• Expectation Propagation (EP) unifies two previous techniques: assumed-

density filtering (ADF), an extension of the Kalman filter, and loopy belief 

propagation (LBP), an extension of belief propagation in Bayesian networks. 

•Loopy belief propagation, because it propagates exact belief states, is useful 

for a limited class of belief networks, such as those which are purely discrete. 

•Expectation Propagation approximates the belief states by only retaining 

expectations, such as mean and variance, and iterates until these 

expectations are consistent throughout the network. 
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•This makes it applicable to hybrid networks with discrete and continuous 

nodes. 

•Experiments with Gaussian mixture models show Expectation Propagation to 

be convincingly better than methods with similar computational cost: 

Laplace's method, variational Bayes, and Monte Carlo.

•Expectation Propagation also provides an efficient algorithm for training 

Bayes point machine classifiers.
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ADF algorithm
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