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What is Learning?

» How to Learn?

> By example.
» By experience.




What is Machine Learning?

Definitaion: A computer progragram is said to learn from
experience E with to some tasks T and performance P if its
performance P improves with experience E on tasks T.




How to make Machine to Learn?

» Direct i.e. By experience.

» Indirect i.e. By example.




Design a Learning System

» Choosing the Training Experience.
» Choosing the Target Function.
» Choosing a Representation for the Target Function.

» Choosing a Function Approximation Algorithm.




Choosing the Training Experience

» Type of training experience.
» Degree of Control of Training Examples.

» Distribution of Examples.




Choosing the Training Experience

> Type of training experience:
- Direct feedback
- Indirect feedback
*Learning from direct training feedback is typically easier than
learning from indirect feedback.

» Degree of Control of Training Examples.

- Action as per Teacher.
- Challenges to Teacher.
- Complete control on both.

» Distribution of Examples.

- Actual Game
- Played against itself
- Both.




Goal and Applications of Machine Learning

Goal: Designing a system which can improve their performance
themselves without human interference.
Applications:

>
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Image Classification
Anti Virus

Spam Filter

Face Recognition
Face Detection
Medical Diagnosis
Speech Recognition
Customer Segmentation
Fraud Detection
Weather Predictions
News Spotting




Types of Learning

» Supervised Learning
- Classification
- Regression
» Unsupervised Learning
- Clustering
- Association
» Reinforcement Learning: feedback wrong result but not how
to correct.

» Semi supervised Learning is a combination of supervised and
unsupervised learning




Sample Space

Sample Space: The set of all possible outcomes of an experiment
is called the sample space and is denoted by Q.

Individual elements are denoted by w and are termed elementary
outcomes.

Examples:

» (Finite) A single roll of an ordinary die. Here,
Q= {1.2.3.4.5.6}.

» (Countable) Infinite number of coin tosses in order to study,
say, the number of tosses before 5 consecutive heads are

observed. Here, Q = {H. T},
» (Uncountable) Speed of a vehicle measured with infinite
precision. Here, 2 = R,




Event

Event: An event is any collection of possible outcomes of an
experiment, that is, any subset of Q.

In most experiments we are generally more interested in observing
the occurrence of particular events rather than the elementary
outcomes. For example, on rolling a die, we may be interested in
observing whether the outcome was even (event £ = {2.4,6}) or
odd (event O = {1.3,5}).




Set Theory Notations

ACBesxeA=>xeB
A=B&AcCBand BC A
AUB={x:xeAorxe B}
ANB={x:xe€ Aand x € B}

AS={x:x ¢ A}




Properties of Set Operations

Commutativity

AUB=BUA
ANB=BnNA
Associativity
AU(BUC)=(AuB)UC
ANn(BNC)=(AnB)NnC
Distributivity
AN(BUuC)=(AnB)U(ANC)
AU(BNC)=(AuB)N(Au ()

DeMorgan's Laws
(AU B) = A°n B*
(AN B) = Acu B©




Disjoint Events

Two events A and B are disjoint (or mutually exclusive) if
ANB = .

A sequence of events Ay, A, As. ... are pair-wise disjoint if
AiNA; =oforall i #j.
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Partition

If Ay, Ay. ... are pair-wise disjoint and U2, A; = €, then the
collection Ay, As. ... forms a partition of €.
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Sigma Algebra

Given a sample space €2, a o-algebra is a collection F of subsets of
Q, with the following properties:

(a)deF.
(b) If A€ F, then A¢ € F.
(c) If Aj € F for every i € N, then U, A; € F.

A set A that belongs to F is called an F-measurable set (event).
Example: Consider Q2 = {1,2.3}.

Fi={6,{1}.{2}.{3}.{1.2},{1,3},{2.3}.{1.2,3}}.
Jo = {(_.‘). {1.2. 3}}




Sample Space Size Considerations

For any Q (countable or uncountable) 22 is always a o-algebra.

For example, for Q = {H, T}, a feasible o-algebra is the power set,
ie, F={o.{H}.{T}{H.T}}

However, if {2 is uncountable, then probabilities cannot be assigned
to every subset of 2%,




Probability Measure & Probability Space

A probability measure P on (2, F) is a function P : F — [0.1]
satisfying

(a) 'P((f)) =] P(Q) = 1;
(b) if A1, As. ... is a collection of pair-wise disjoint members of F,
then

P(U?ilAf) - Z,oil P(Ai)

The triple (Q. F.P), comprising a set €2, a o-algebra F of subsets
of 2, and a probability measure P on (€2, .F), is called a
probability space.




Example

Consider a simple experiment of rolling an ordinary die in which we
want to identify whether the outcome results in a prime number or
not.

Q={1.2.3.4,5,6}

F ={6.{1.4.6}.{2.3.5},{1.2.3.4.5.6}}

P F—[0,1]
» P(p)=0
> P({1.4.6}) = 0.5
= ({235} =0.5
» P(Q) =




Bonferroni’s Inequality

P(ANB)> P(A)+ P(B)-1
General form:

P(Ni_1AY) 2 3275, P(A)) — (n—1)

Gives a lower bound on the intersection probability which is useful
when this probability is hard to calculate.

Only useful if the probabilities of individual events are sufficiently
large.
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Conditional Probability

Given two events A and B, if P(B) > 0, then the conditional
probability that A occurs given that B occurs is defined to be

P(AB) = szgf]?)

Essentially, since event B has occurred, it becomes the new sample
space.

Conditional probabilities are useful when reasoning in the sense
that once we have observed some event, our beliefs or predictions
of related events can be updated/improved.




Example

Q. A fair coin is tossed twice. What is the probability that both
tosses result in heads given that at least one of the tosses resulted
in a heads?




Example

Q. A fair coin is tossed twice. What is the probability that both
tosses result in heads given that at least one of the tosses resulted
in a heads? 5

Sol. Q = {HH. TT.HT. TH}
P(HH) = P(TT) = P(HT) = P(TH) = 1/4

P(HH|at least one toss heads)

P(HH|HT U THU HH)
_ P(HHN{HTUTHUHH))
= T P(HTUTHUHR)
P(HH
(HTUTHUHH)
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Bayes' Rule

We have:

P(A|B) = Z5ps)
P(AN B) = P(A|B)P(B)
P(AN B) = P(B|A)YP(A)

P(A|B)P(B) = P(B|AYP(A)

P(A|B) = ﬂ% (Bayes' Rule)




Bayes’ Rule

Let A;. As. ... be a partition of the sample space, and let B be any
subset of the sample space. Then, foreachi =1, 2, ...,

1B) — PBIAIP(A)
P(AilB) = s=p@ia)P(A)

Bayes’ rule is important in that it allows us to compute the
conditional probability P(A|B) from the “inverse’ conditional
probability P(B|A).




Example

Q. To answer a multiple choice question, a student may either
know the answer or may guess it. Assume that with probability p
the student knows the answer to a question, and with probability
g, the student guesses the right answer to a question she does not
know. What is the probability that for a question the student
answers correctly, she actually knew the answer to the question?




Example

Q. To answer a multiple choice question, a student may either
know the answer or may guess it. Assume that with probability p
the student knows the answer to a question, and with probability
g, the student guesses the right answer to a question she does not
know. What is the probability that for a question the student
answers correctly, she actually knew the answer to the question?

Sol. Let K be the event that the student knows the question, and
C be the event that the student answers the question correctly.
We have P(K) = p, P(-K) =1-p, P(C|K) =1, P(C|-K)=q
P(KIC)

= P(KYP(CIK)+P(=K)P(C|-K)
= prq(i-p




Independent Events

Two events, A and B, are said to be independent if

P(AN B) = P(A)P(B)

More generally, a family A; : i € I is called independent if

'P(ﬂaEJA ) =[licsP(A})

for all finite subsets J of /.

From the above, it should be clear that pair-wise independence
does not imply independence.




Conditional Independence

Let A, B, and C be three events with P(C) > 0. The events A
and B are called conditionally independent given C if

P(AN B|C) = P(A|C)P(B|C)
or equivalently

P(A|BN C) = P(A|C)

Example: Assume that admission into the M.Tech. programme at
IITM & |ITB is based solely on candidate's GATE score. Then




Random Variable

A random variable is a function X : Q — R, i.e., it is a function
from the sample space to the real numbers.

Examples:
» The sum of outcomes on rolling 3 dice.

» The number of heads observed when tossing a fair coin 3
times.




Induced Probability Function

Let Q = {w;,ws, ...} be a sample space and P be a probability
measure (function).

Let X be a random variable with range X’ = {x1.x2, ..., X }.

We define the induced probability function Py on X as

Px(X = x) = P({wj € Q: X(wj) = xi})




Induced Probability Function

Consider the previous example experiment of tossing a fair coin 3

times. Let X be the number of heads obtained in the three tosses.
Enumerating the elementary outcomes, we observe the value of X

as

«w |HHH HHT HTH THH TTH THT HTT TTT
X(w) | 3 2 2 2 1 1 1 0

Instead of using the probability measure defined on the elementary
outcomes or events, we would ideally like to measure the
probability of the random variable taking on values in its range.

X 0 1 2 3
Px(X=x) | 1/8 3/8 3/8 1/8




Cumulative Distribution Function

The cumulative distribution function or cdf of a random variable X,
denoted by Fx(x), is defined by

Fx(x) = Px(X < x), for all x

Example:

X (—20.0] (—00.1] (—00.2] (—00.3] (—o0.2¢)
Fx(x) 1/8 1/2 7/8 1 1




Properties of cdf

A function Fx(x) is a cdf iff the following three conditions hold:
> (Monotonicity) If x <y, then Fx(x) < Fx(y)
» (Limiting values) limy_,_~ Fx(x) = 0 and limy_ . Fx(x) =1
> (Right-continuity) For every x, we have lim, . Fx(y) = Fx(x)




Continuous & Discrete Random Variables

A random variable X is continuous if Fx(x) is a continuous
function of x.

A random variable X is discrete if Fx(x) is a step function of x.
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Probability Mass Function

The probability mass function or pmf of a discrete random variable
X is given by

fx(x) = P(X = x), for all x
Example: For a geometric random variable X with parameter p,

fx(x) = { (()1 —pYp forx=1,2,... )

otherwise

Properties:
» fx(x) >0, for all x
» Y fx(x)=1




Probability Density Function

The probability density function or pdf of a continuous random
variable is the function fx(x) which satisfies

x(x) = j fx(t)dt, for all x

Properties:
» fx(x) >0, for all x
> 2 fx(x)dx =1




Expectation

The expected value or mean of a random variable X, denoted by
E[X], is given by

“ E[X] = [ xfx(x)dx (continuous RV)

E[X] = X pps0Xfx (%) = Xip)=0 XP(X = x) (discrete RV)




Example

Q. Let the random variable X take values -2, -1, 1, 3 with
probabilities 1/4, 1/8, 1/4, 3/8 respectively. What is the
expectation of the random variable ¥ = X2?

Sol. The random variable Y takes on the values 1, 4, 9 with
probabilities 3/8, 1/4, 3/8 respectively.

Hence,
3 1 3 19
Y) — =y)=1.-= 0 R e
E(Y) gw(v Py=l-s #8248 2 =5
o
Alternatively,
E(Y)= szp _43+1 1+13+9§—1—g

8 4




Properties of Expectations

Let X be a random variable and let a. b, ¢ be constants. Then, for
functions g1(X) and ga(X) whose expectations exist

E(agi(X) + bga(X) + c) = aEg1(X) + bEga(X) + ¢
If g1(X) > 0 for all x, then Egi(X) >0

If @1(X) = g(X) for all x, then Egi1(X) = Ega(X)
If a < gi(X) < b, forall x, then a < Egy(X) < b
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ANN

Feed forward

Feed backward/recurrent : for dynamic

Associate Network

Fully connected

partially connected

single layer

multi layer

Neuron: are the processing or computation unit/elements

First layer is input layer

Last layer is output layer

Perceptron: error el=dl-o0l , dl=desired output ol=actual

output

w2=wl+n*x1*el, w2 new weight, wl previous weight,
n=learning rate,

-algorithm for supervised adaptive learning of binary cIassnclersgﬁ«_a

-data pair chosen randomly from data set
-gradually error rate is reduces to 0 iteratively.




Perceptron




Multi layer Perceptron(MLP)

» Activation Function : Looks like threshold as in perceptron
but it is varies smoothly and differentiable. For example
sigmoid function or hyperbolic (for classification or pattern
recognition task) or Linear (for regression problems).

eX — e X

> H) = arex
1

> S0 = 14 e%

1
» Error Function E(t,0) = 3 St — 0j)?




Step in MLP

» Data Preparation
» Data Selection
» Data Pre-process
- Formatting: DBMS to excel or text file, 2D to 1D
- Cleaning: Removal of duplicate or unbound or fixing of
missing data
- Sampling: take small sample of data to reduce time complexity
- Normalization: not essential but beneficial
» Data Transform
- Scaling :Dollar, rupees, weights etc.
- Decomposition: split of complex into smaller. split date into
three
- Aggregation: opposite of decomposition , multiple entry of
deposits in to acc

» Training , Testing and Validation
» Generalization and Over-fitting




Support Vector Machine

>
>
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Supervised learning with learning algo

Maximize predictive accuracy and automatically avoids over
fitting.

Not possible for unsupervised data

Used for classification and regression problems

Binary Linear Classifier

Non Linear Classifier with Kernel function

Training data set is divided into two category

Try to maximize the distance between two category

If you want to use for unlabelled or semi labelled data set 1
use some algo for clustering such as support vector clustering
and the apply SVM

Linear classifier wx = b =10

(w.x; +b) > +1if y; = +1

(wxi+b) < —1ify; =-1

yilw.x;i +b) > +1lor yi(wx;+b)—1>0

| —1—b|

Distance from H1 to H is
[|wl]|







Thank you

» Please send your feedback or any queries to
akyadavl@amity.edu

» You can contact me on +91 9911375598




