
Turing Machine

Module 3

Dr. A K Yadav

April 28, 2022

Outline
1 The Turing Machine Model

2 Representation of Turing Machines

3 Language acceptability of Turing Machine

4 Design of TM

5 Variation of TM

6 Universal TM

7 Church’s Machine

8 Recursive and Recursively Enumerable Language

9 Unrestricted Grammars

10 Context Sensitive Language

11 Linear Bounded Automata

12 Construction of Grammar Corresponding to TM

13 Construction of Grammar Corresponding to LBA

14 CYK Algorithm

Dr. A K Yadav TM and LBA April 28, 2022 2/53

The Turing Machine Model

Turing Machine

A Turing Machine’s storage can be visualized as a single, one
dimensional array of cells, each of which can hold a single
symbol.

This array extends infinitely in both directions.

Information can be read and changed in any order, such
storage device is called Tape.

Turing Machine has neither an input file nor any special
output mechanism, whatever input and output is required will
be done on machine’s tape.

Dr. A K Yadav TM and LBA April 28, 2022 3/53

The Turing Machine Model

Turing Machine

A Turing machine M is defined by
M=(Q, Σ, τ, δ, q0,□,F)
where, Q = set of internal states
Σ = Input alphabet; Σ ⊆ τ − {□}
τ = finite set of symbols called tape alphabet
δ = transition function
Q × τ → Q × τ × {L,R}
□ ∈ τ = special symbol called blank
q0 ∈ Q =initial state
F ⊆ Q = set of final states

Dr. A K Yadav TM and LBA April 28, 2022 4/53

The Turing Machine Model

Turing Machine

A Turing machine M is defined by
M=(Q, Σ, τ, δ, q0,□,F)
where, Q = set of internal states
Σ = Input alphabet; Σ ⊆ τ − {□}
τ = finite set of symbols called tape alphabet
δ = transition function
Q × τ → Q × τ × {L,R}
□ ∈ τ = special symbol called blank
q0 ∈ Q =initial state
F ⊆ Q = set of final states

Dr. A K Yadav TM and LBA April 28, 2022 4/53

The Turing Machine Model

Turing Machine

The current state of the control unit and the current tape
symbol being read determines the new state of the control
unit and new tape symbol which replaces the old one and
move the head L or R.

δ(q0, a) = (q1, b,R)

The acceptability of a string is decided by the reachability
from the initial state to some final state. So the final states
are also called the accepting states.

A Turing machine is said to halt whenever it reaches a
configuration for which δ is not defined.
=⇒ No transitions are defined for any final state, so the
Turing machine will halt whenever it enters a final state.

Dr. A K Yadav TM and LBA April 28, 2022 5/53

The Turing Machine Model

Turing Machine

Consider the Turing machine defined by: Q={q0, q1},
Σ={0,1}, τ = {0, 1,□}, F ={q1} and
δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)
δ(q0,□) = (q1,□, L)

Q={q0, q1, q2}, Σ={a,b}, τ = {a, b,□}
Let F be empty. Define δ by:
δ(q0, a) = (q1, a,R)
δ(q0, b) = (q1, a,R)
δ(q0,□) = (q1,□, L)
δ(q1, a) = (q0, a, L)
δ(q1, b) = (q0, b, L)
δ(q1,□) = (q2,□,R)

Dr. A K Yadav TM and LBA April 28, 2022 6/53

The Turing Machine Model

Turing Machine

Consider the Turing machine defined by: Q={q0, q1},
Σ={0,1}, τ = {0, 1,□}, F ={q1} and
δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)
δ(q0,□) = (q1,□, L)

Q={q0, q1, q2}, Σ={a,b}, τ = {a, b,□}

Let F be empty. Define δ by:
δ(q0, a) = (q1, a,R)
δ(q0, b) = (q1, a,R)
δ(q0,□) = (q1,□, L)
δ(q1, a) = (q0, a, L)
δ(q1, b) = (q0, b, L)
δ(q1,□) = (q2,□,R)

Dr. A K Yadav TM and LBA April 28, 2022 6/53

The Turing Machine Model

Turing Machine

Consider the Turing machine defined by: Q={q0, q1},
Σ={0,1}, τ = {0, 1,□}, F ={q1} and
δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)
δ(q0,□) = (q1,□, L)

Q={q0, q1, q2}, Σ={a,b}, τ = {a, b,□}
Let F be empty. Define δ by:
δ(q0, a) = (q1, a,R)
δ(q0, b) = (q1, a,R)
δ(q0,□) = (q1,□, L)
δ(q1, a) = (q0, a, L)
δ(q1, b) = (q0, b, L)
δ(q1,□) = (q2,□,R)

Dr. A K Yadav TM and LBA April 28, 2022 6/53

Representation of Turing Machines

Representation of Turing Machines

Turing machine can be represented by tree ways:

Instantaneous Descriptions (ID) using move-relations
δ(q1, xi) = (q2, y ,R)
x1x2 . . . q1xi . . . xn ⊢ x1x2 . . . yq2xi+1 . . . xn
δ(q1, xi) = (q2, y , L)
x1x2 . . . q1xi . . . xn ⊢ x1x2 . . . q2xi−1y . . . xn
δ(q1, xn) = (q2, y ,R)
x1x2 . . . q1xn ⊢ x1x2 . . . yq2□
Because the tape is of infinite length having □.
δ(q1, x1) = (q2, y , L)
q1x1x2 . . . xn ⊢ q2yx2 . . . xn
Because we prevent the machine from going off the left-hand end of
the tape

Transition table

Dr. A K Yadav TM and LBA April 28, 2022 7/53

Representation of Turing Machines

Representation of Turing Machines

Transition diagram (transition graph)

Dr. A K Yadav TM and LBA April 28, 2022 8/53

Representation of Turing Machines

Representation of Turing Machines

Dr. A K Yadav TM and LBA April 28, 2022 9/53

Language acceptability of Turing Machine

Language acceptability of Turing Machine

Consider the Turing machine M = (Q,Σ, τ, δ, q0,□,F). A
string w ∈ Σ∗ is said to be accepted by M if qow ⊢∗ α1qα2

for some q ∈ F and α1, α2 ∈ τ∗

M does not accept w if the machine M either halts in a
non-accepting state or does not halt.

There are other equivalent definitions of acceptance by the
Turing machine, we will not discuss them now.

Dr. A K Yadav TM and LBA April 28, 2022 10/53

Design of TM

Design of TM

The basic guidelines for designing a Turing machine:

The fundamental objective in scanning a symbol by the R/W
head is to know what to do in the future. The machine must
remember the past symbols scanned. The Turing machine can
remember this by going to the next unique state.

The number of states must be minimized. This can be
achieved by changing the states only when there is a change
in the written symbol or when there is a change in the
movement of the R/W head.

Dr. A K Yadav TM and LBA April 28, 2022 11/53

Design of TM

Design of Turing Machine

Question: For Σ= {a,b}, design a Turing machine that accepts
L={anbn : n ≥ 1}
Solution:

Start with left most ’a’, replace it by ’x’

Travel righ to find left most ’b’, replace it by ’y’.

Move left again to find left most ’a’, replace by ’x, then again right to left most
’b’, replace by ’y’.

Continue moving right and left till no ’a’ and ’b’ remains, then the string must
be in L.

Dr. A K Yadav TM and LBA April 28, 2022 12/53

Design of TM

Design of Turing Machine

Q={q0, q1, q2, q3, q4}, F={q4}
Σ = {a, b}, τ = {a, b, x , y ,□}
δ(q0, a) = (q1, x ,R) =⇒ replaces ’a’ by ’x’
δ(q1, a) = (q1, a,R) =⇒ move right
δ(q1, y) = (q1, y ,R) =⇒ move right
δ(q1, b) = (q2, y , L) =⇒ ’a’ paired with ’b’
Move left to find ’x’
δ(q2, y) = (q2, y , L) =⇒ move left
δ(q2, a) = (q2, a, L) =⇒ move left
δ(q2, x) = (q0, x ,R) =⇒ placed at first ’a’
Check for all ’a’ and ’b’ are replaced
δ(q0, y) = (q3, y ,R)
δ(q3, y) = (q3, y ,R)
δ(q3,□) = (q4,□,R)
For input ’aabb’

q0aabb ⊢ xq1abb ⊢ xaq1bb ⊢ xq2ayb ⊢ q2xayb ⊢ xq0ayb ⊢ xxq1yb ⊢ xxyq1b ⊢
xxq2yy ⊢ xq2xyy ⊢ xxq0yy ⊢ xxyq3y ⊢ xxyyq3 ⊢ xxyy□q4□

Dr. A K Yadav TM and LBA April 28, 2022 13/53

Design of TM

Design of Turing machine

Question: Design a Turing Machine that accepts
L={anbncn : n ≥ 1}

Dr. A K Yadav TM and LBA April 28, 2022 14/53

Design of TM

Turing Computable

A function ’f’ with domain ’D’ is said to be Turing computable or
just computable, if there exists some Turing machine M=(Q,
Σ, τ, δ, q0,□, F) such that q0w ⊢∗

M qf f (w), qf ∈ F for all w∈ D.

Dr. A K Yadav TM and LBA April 28, 2022 15/53

Design of TM

Turing Computable

Example

Given two positive integers ’x’ and ’y’. Design a Turing machine
that computes x+y
Solution: Using Unary notation in which any positive integer ’x’ is
represented by w(x) ∈ {1}+ such that |w(x)|=x.
So, the required machine is: q0w(x)0w(y) ⊢ ∗qf w(x + y)0
Steps: Move the separating 0 to right end of w(y)
Let M=(Q,Σ, τ, q0,□,F)
Q={q0, q1, q2, q3, q4}, F={q4}
δ(q0, 1) = (q0, 1,R), δ(q0, 0) = (q1, 1,R), δ(q1, 1) = (q1, 1,R),
δ(q1,□) = (q2,□, L), δ(q2, 1) = (q3, 0, L), δ(q3, 1) = (q3, 1, L)
δ(q3,□) = (q4,□,R)

Adding 111 to 11
q0111011 ⊢ 1q011011 ⊢ 11q01011 ⊢ 111q0011 ⊢ 1111q111 ⊢ . . .

Dr. A K Yadav TM and LBA April 28, 2022 16/53

Design of TM

Turing Computable

Example

Given two positive integers ’x’ and ’y’. Design a Turing machine
that computes x+y
Solution: Using Unary notation in which any positive integer ’x’ is
represented by w(x) ∈ {1}+ such that |w(x)|=x.
So, the required machine is: q0w(x)0w(y) ⊢ ∗qf w(x + y)0
Steps: Move the separating 0 to right end of w(y)
Let M=(Q,Σ, τ, q0,□,F)
Q={q0, q1, q2, q3, q4}, F={q4}
δ(q0, 1) = (q0, 1,R), δ(q0, 0) = (q1, 1,R), δ(q1, 1) = (q1, 1,R),
δ(q1,□) = (q2,□, L), δ(q2, 1) = (q3, 0, L), δ(q3, 1) = (q3, 1, L)
δ(q3,□) = (q4,□,R)
Adding 111 to 11
q0111011 ⊢ 1q011011 ⊢ 11q01011 ⊢ 111q0011 ⊢ 1111q111 ⊢ . . .

Dr. A K Yadav TM and LBA April 28, 2022 16/53

Variation of TM

Variation of TM

Turing Machine with Stationary Head

Storage in the State

Multiple Track Turing Machine

Subroutines

Multitape Turing Machines

Nondeterministic Turing Machines

Dr. A K Yadav TM and LBA April 28, 2022 17/53

Universal TM

Universal TM

A universal Turing machine is a Turing machine Tu that works as
follows:

It is assumed to receive an input string of the form e(T)e(z),
where T is an arbitrary TM, z is a string over the input
alphabet of T , and e is an encoding function whose values
are strings in {0, 1}∗. The computation performed by Tu on
this input string satisfies two properties:

1 Tu accepts the string e(T)e(z) if and only if T accepts z .
2 If T accepts z and produces output y , then Tu produces output

e(y).

Dr. A K Yadav TM and LBA April 28, 2022 18/53

Universal TM

Encoding Function

We assume that there is an infinite set S = {a1, a2, a3, . . . } of
symbols, where a1 = ∆ = blank, such that the tape alphabet of
every Turing machine T is a subset of S.
If T = (Q,Σ, τ, q0, δ) is a TM and z is a string, we define the
strings e(T) and e(z) as follows:

First we assign numbers to each state, tape symbol, and tape
head direction of T .

Each tape symbol, including ∆, is an element ai of S, and it is
assigned the number n(ai) = i .

The accepting state ha, the rejecting state hr , and the initial
state q0 are assigned the numbers n(ha) = 1, n(hr) = 2, and
n(q0) = 3.

The other elements q ∈ Q are assigned distinct numbers n(q),
each at least 4.

Dr. A K Yadav TM and LBA April 28, 2022 19/53

Universal TM

Encoding Function

We don’t require the numbers to be consecutive, and the
order is not important.

The three directions R, L, and S are assigned the numbers
n(R) = 1, n(L) = 2, and n(S) = 3

For each move m of T of the form δ(p, a) = (q, b,D)

e(m) = 1n(p)01n(a)01n(q)01n(b)01n(D)0

List the moves of T in any order as m1, . . . ,mk . and define
e(T) as:

e(T) = e(m1)0e(m2)0 . . .)0(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S

e(z) = 01n(z1)01n(z2)0 . . . 01n(zj)0

Dr. A K Yadav TM and LBA April 28, 2022 20/53

Universal TM

Encoding Function

The input to UTM will be e(T)e(z)

Example: Let T be the TM shown in below figure, which
transforms an input string of a’s and b’s by changing the
leftmost a, if there is one, to b.

Dr. A K Yadav TM and LBA April 28, 2022 21/53

Universal TM

Encoding Function

Solutions:We assume for simplicity that n(a) = 2 and
n(b) = 3. By definition, n(q0) = 3, and we let n(p) = 4 and
n(r) = 5.

If m is the move determined by the formula
δ(q0,∆) = (p,∆,R), then

e(m) = 130101401010 = 111010111101010

if we encode the moves in the order they appear in the
diagram, left to right
e(T) = 111010111010100111101110111101110100
11110110111110111011001111010111110101100
11111011101111101110110011111010101011100

Let the string to be checked for acceptance is ∆aab

e(z) = 0101101101110

Dr. A K Yadav TM and LBA April 28, 2022 22/53

Universal TM

Encoding Function

Input to the UTM is e(T)e(z)
= 111010111010100111101110111101110100
11110110111110111011001111010111110101100
111110111011111011101100111110101010111000101101101110

We will use three tapes. The first tape is for input and output
and originally contains the string e(T)e(z), where T is a TM
and z is a string over the input alphabet of T .

The second tape will correspond to the working tape of T ,
during the computation that simulates the computation of T
on input z .

The third tape will have only the encoded form of T’s current
state.

Tu starts by transferring the string e(z), except for the initial
0, from the end of tape 1 to tape 2, beginning in square 3.

Dr. A K Yadav TM and LBA April 28, 2022 23/53

Universal TM

Encoding Function

Since T begins with its leftmost square blank, Tu writes 10,
the encoded form of ∆, in squares 1 and 2.

Square 0 is left blank, and the tape head begins on square 1.

The second step is for Tu to write 111, the encoded form of
the initial state q0, on tape 3, beginning in square 1.

∆1110101110101001111011101111011101001111011011111011101100111101011. . . .
∆10110110111∆
∆111∆

Now we simulate the UTM by finding the pattern for state q
from tape 3 followed by code of the 0e(zi)0 from tape 2 under
R/W head.

Dr. A K Yadav TM and LBA April 28, 2022 24/53

Universal TM

Encoding Function

When pattern is found, copy 1st part as state on tape 3,
replace e(zi) by 2nd part from tape 1 and move the R/W
head as per the encoded value of direction in part 3 on tape 1.

We repeat the above two steps until we found state ha = 1

In the last, when T halt with acceptance means on the 3rd
tape ha = 1, we erase the contents of 1st tape and copy the
encoded output of UTM on 2nd tape to the 1st tape.

Dr. A K Yadav TM and LBA April 28, 2022 25/53

Church’s Machine

Church-Turing Thesis

To say that the Turing machine is a general model of computation
means that any algorithmic procedure that can be carried out at
all, by a human computer or a team of humans or an electronic
computer, can be carried out by a TM. This statement was first
formulated by Alonzo Church in the 1930s and is usually referred
to as Church’s thesis, or the Church-Turing thesis. It is not a
mathematically precise statement that can be proved, because we
do not have a precise definition of the term algorithmic procedure.
By now, however, there is enough evidence for the thesis to have
been generally accepted. Here is an informal summary of some of
the evidence.

Dr. A K Yadav TM and LBA April 28, 2022 26/53

Church’s Machine

Church-Turing Thesis

The nature of the model makes it seem likely that all the steps
crucial to human computation can be carried out by a TM.
Humans normally work with a two-dimensional sheet of paper,
and a human computer may perhaps be able to transfer his
attention to a location that is not immediately adjacent to the
current one, but enhancements like these do not appear to
change the types of computation that are possible. A TM
tape could be organized so as to simulate two dimensions; one
likely consequence would be that the TM would require more
moves to do what a human could do in one.

Dr. A K Yadav TM and LBA April 28, 2022 27/53

Church’s Machine

Church-Turing Thesis

Various enhancements of the TM model have been suggested
in order to make the operation more like that of a human
computer, or more convenient, or more efficient. The
multitape TM discussed is an example. In each case, it has
been shown that the computing power of the device is
unchanged.

Other theoretical models of computation have been proposed.
These include abstract machines such as the ones with two
stacks or with a queue, as well as machines that are more like
modern computers. In addition, various notational systems
(programming languages, grammars, and other formal
mathematical systems) have been suggested as ways of
describing or formulating computations. Again, in every case,
the model has been shown to be equivalent to the Turing
machine.

Dr. A K Yadav TM and LBA April 28, 2022 28/53

Church’s Machine

Church-Turing Thesis

Since the introduction of the Turing machine, no one has
suggested any type of computation that ought to be included
in the category of “algorithmic procedure” and cannot be
implemented on a TM.

Dr. A K Yadav TM and LBA April 28, 2022 29/53

Recursive and Recursively Enumerable Language

Characteristic Function

For a language L ⊆ Σ∗, the characteristic function of L is the
function χL : Σ∗ → {0, 1} defined by

χL(x) =

{
1 if x ∈ L

0 if x /∈ L

Computing the function χL and accepting the language L are
two approaches to the question of whether an arbitrary string
is in L or not.

A TM computing χL indicates whether the input string is in L
by producing output 1 or output 0.

A TM accepting L indicates the same thing by accepting or
not accepting the input.

Dr. A K Yadav TM and LBA April 28, 2022 30/53

Recursive and Recursively Enumerable Language

Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a
language L ⊆ Σ∗ if L(T) = L.

T decides L if T computes the characteristic function
χL : Σ∗ → {0, 1}.
A language L is recursively enumerable if there is a TM that
accepts L, and L is recursive if there is a TM that decides L.

Recursively enumerable languages are sometimes referred to
as Turing-acceptable, and recursive languages are sometimes
called Turing-decidable, or simply decidable.

Every recursive language is recursively enumerable.

Dr. A K Yadav TM and LBA April 28, 2022 31/53

Recursive and Recursively Enumerable Language

Accepting a Language and Deciding a Language

The main difference is that in recursively enumerable language
the machine halts for input strings which are in language L.
but for input strings which are not in L, it may halt or may
not halt. When we come to recursive language it always halt
whether it is accepted by the machine or not.

If L ⊆ Σ∗ is accepted by a TM T that halts on every input
string, then L is recursive.

If L ⊆ Σ∗ is accepted by a TM T that halts on every input
string x when x ∈ L and may or may not halt when x /∈ L
then L is recursively enumerable.

Dr. A K Yadav TM and LBA April 28, 2022 32/53

Unrestricted Grammars

Unrestricted Grammars

The unrestricted grammars correspond to recursively
enumerable languages in the same way that CFGs correspond
to languages accepted by PDAs and regular grammars to
those accepted by DFAs

An unrestricted grammar is a 4-tuple G = (V ,Σ,P, S), where
V and Σ are disjoint sets of variables and terminals,
respectively. S is an element of V called the start symbol, and
P is a set of productions of the form α → β where
α, β ∈ (V ∪ Σ)∗ and α contains at least one variable

For every unrestricted grammar G, there is a Turing machine
T with L(T) = L(G).

For every Turing machine T with input alphabet Σ, there is an
unrestricted grammar G generating the language L(T) ⊆ Σ∗.

Dr. A K Yadav TM and LBA April 28, 2022 33/53

Context Sensitive Language

Unrestricted Grammars

A context-sensitive grammar (CSG) is an unrestricted
grammar in which no production is length-decreasing.

In other words, every production is of the form α → β, where
|β| ≥ |α|.
No variable is allowed in β whose value is null.

A language is a context-sensitive language (CSL) if it can be
generated by a context-sensitive grammar.

Example Write the production for the language
L = {anbncn|n ≥ 1}

Dr. A K Yadav TM and LBA April 28, 2022 34/53

Context Sensitive Language

Unrestricted Grammars

Solution: S → SABC |ABC ,
BA → AB,
CA → AC ,
CB → BC ,
A → a,
aA → aa,
aB → ab,
bB → bb,
bC → bc,
cC → cc .

Dr. A K Yadav TM and LBA April 28, 2022 35/53

Linear Bounded Automata

Linear Bounded Automata

This model is important because (a) the set of
context-sensitive languages is accepted by the model and (b)
the infinite storage is restricted in size but not in accessibility
to the storage in comparison with the Turing machine model.

It is called the linear bounded automaton (LBA) because a
linear function is used to restrict (to bound) the length of the
tape.

A linear bounded automaton is a non-deterministic Turing
machine which has a single tape whose length is not infinite
but bounded by a linear function of the length of the input
string.

The models can be described formally by the following set
format:
M = (Q,Σ, τ, δ, q0, b, §, $,F)

Dr. A K Yadav TM and LBA April 28, 2022 36/53

Linear Bounded Automata

Linear Bounded Automata

All the symbols have the same meaning as in the basic model
of Turing machines with the difference that the input alphabet
Σ contains two more special symbols § and $ also.

§ is called the left-end marker which is entered in the leftmost
cell of the input tape and prevents the R/W head from
getting off the left end of the tape.

$ is called the right-end marker which is entered in the
rightmost cell of the input tape and prevents the R/W head
from getting off the right end of the tape.

Both the end-markers should not appear on any other cell
within the input tape, and the R/W head should not print any
other symbol over both the end-markers.

Let us consider the input string w with |w | = n − 2.

Dr. A K Yadav TM and LBA April 28, 2022 37/53

Linear Bounded Automata

Linear Bounded Automata

The input string w can be recognized by an LBA if it can also
be recognized by a Turing machine using no more than kn
cells of input tape, where k is a constant specified in the
description of LBA.

The value of k does not depend on the input string but is
purely a property of the machine.

Whenever we process any string in LBA, we shall assume that
the input string is enclosed within the end-markers § and $.

The model of LBA can be represented by the block below
diagram:

Dr. A K Yadav TM and LBA April 28, 2022 38/53

Linear Bounded Automata

Linear Bounded Automata

Dr. A K Yadav TM and LBA April 28, 2022 39/53

Linear Bounded Automata

Linear Bounded Automata

There are two tapes: one is called the input tape, and the
other is working tape.

On the input tape the head never prints and never moves to
the left.

On the working tape the head can move in any direction Left
or Right and can modify the contents in any way, without any
restriction.

In the case of LBA, an ID is denoted by (q,w , i), where
q ∈ Q,w ∈ τ and i is some integer between 1 and n.

The transition of IDs is similar except that i changes to i − 1
if the R/W head moves to the left and to i + 1 if the head
moves to the right.

Dr. A K Yadav TM and LBA April 28, 2022 40/53

Linear Bounded Automata

Linear Bounded Automata

The language accepted by LBA is defined as the set

{w ∈ {Σ− {§, $}}∗|(q0, §w$, 1) ⊢∗ (q, α, i)}

for some q ∈ F and for some integer i between 1 and n,
α ∈ τ∗.

As a null string can be represented either by the absence of
input string or by a completely blank tape, an LBA may
accept the null string.

A linear bounded automaton M accepts a string w if, after
starting at the initial state with R/W head reading the
left-endmarker, M halts over the right-endmarker in a final
state. Otherwise, w is rejected

Dr. A K Yadav TM and LBA April 28, 2022 41/53

Linear Bounded Automata

Linear Bounded Automata

The set of strings accepted by non-deterministic LBA is the
set of strings generated by the context sensitive grammars,
excluding the null strings.

If L is a context-sensitive language, then L is accepted by a
linear bounded automaton and vice versa.

Exercise; Design the LBA for the language
L = {anbncn|n ≥ 1}

Dr. A K Yadav TM and LBA April 28, 2022 42/53

Construction of Grammar Corresponding to TM

Construction of Grammar Corresponding to TM

For understanding the construction. we have to note that a
transition of ID corresponds to a production.

We enclose IDs within brackets. So acceptance of w by M
corresponds to the transformation of initial ID [q0, §w$] into
[qf b].

Also, the ’length’ of ID may change if the R/W head reaches
the left-end or the right-end, i.e. when the left-hand side or
the right-hand side bracket is reached.

So we get productions corresponding to transition of IDs with
(i) Left move (ii) Right move, and (iii) end-markers.

Right move:

Dr. A K Yadav TM and LBA April 28, 2022 43/53

Construction of Grammar Corresponding to TM

Construction of Grammar Corresponding to TM

1

δ(qi , aj) = (ql , ak ,R)

ID amqiajam+1 ⊢ amakqlam+1

leads to the production
qiaj → akql

2 When at the right-end and right move. When the R/W head moves
to the right of], the length increases. That is

δ(qi ,]) = (qi ,□,R)

ID amqi] ⊢ amqi□]
Corresponding to this we have a production

qi] → qi□]

for all qi ∈ Q

Dr. A K Yadav TM and LBA April 28, 2022 44/53

Construction of Grammar Corresponding to TM

Construction of Grammar Corresponding to TM

3 When □ occurs to the left of], it can be deleted. This is achieved
by the production

aj□] → aj]

for all aj ∈ τ

Left move:
1

δ(qi , aj) = (ql , ak , L)

ID amqiaj ⊢ qlamak leads to the production

amqiaj → qlamak

for all am ∈ τ
2 When at the left-end and left move

δ(qi , aj) = (ql , ak , L)

ID [qiaj ⊢ [ql□ak
leads to the production

[qiaj → [ql□ak

Dr. A K Yadav TM and LBA April 28, 2022 45/53

Construction of Grammar Corresponding to TM

Construction of Grammar Corresponding to TM

3 When □ occurs next to the left-bracket, it can be deleted. This is
achieved by including the production

[□ → [

Introduction of end-markers: For introducing end-markers for
the input string, the following productions are included, where
q0 is the initial state and qf is the final state:

1 ai → [q0§ai for ai ∈ τ, ai ̸= □
2 ai → ai$] for ai ∈ τ, ai ̸= □
3 For removing the brackets from [qf□], we include the production

[qf□] → S

To get the required grammar, reverse the arrows of the
productions obtained above.

The productions we get can be called inverse productions.

The new grammar is called the generative grammar.

Dr. A K Yadav TM and LBA April 28, 2022 46/53

Construction of Grammar Corresponding to LBA

Construction of Grammar Corresponding to LBA

A linear bounded automaton M accepts a string w if, after
starting at the initial state with R/W head reading the
left-end marker, M halts over the right-end marker in a final
state. Otherwise, w is rejected.

The production rules for the generative grammar are
constructed as in the case of Turing machines.

The following additional productions are needed in the case of
LBA:

1 aiqf $ → qf $ for all ai ∈ τ
2 §qf $ → §qf
3 §qf → qf

Exercise: Find the grammar generating the set accepted by a linear
bounded automaton M whose transition table is given below:

Dr. A K Yadav TM and LBA April 28, 2022 47/53

Construction of Grammar Corresponding to LBA

Construction of Grammar Corresponding to LBA

Dr. A K Yadav TM and LBA April 28, 2022 48/53

CYK Algorithm

CYK Algorithm

The algorithm is called the CYK algorithm, after its
originators J. Cocke, D. H. Younger, and T. Kasami.

The algorithm works only if the grammar is in Chomsky
normal form and succeeds by breaking one problem into a
sequence of smaller ones in the following way.

Assume that we have a grammar G = (V, T, S, P) in
Chomsky normal form and a string w = a1a2 . . . an.

Define substrings wij = ai . . . aj

Define subsets of V as Vij = {A ∈ V : A ⇒∗ wij}
Clearly, w ∈ L(G) if and only if S ∈ V1n.

To compute Vii , observe that A ∈ Vii if and only if G contains
a production A → ai .

Therefore, Vii can be computed for all 1 ≤ i ≤ n by inspection
of w and the productions of the grammar.

Dr. A K Yadav TM and LBA April 28, 2022 49/53

CYK Algorithm

CYK Algorithm

To compute Vij for i < j , A derives wij if and only if there is a
production A → BC , with B ⇒∗ wik and C ⇒∗ wk+1j for
some k with i ≤ k < j .

In other words,
Vij = ∪k=i ...j−1{A : A → BC ,B ∈ Vik ,C ∈ Vk+1j

⇒ {A1|A1 → {Vii}{Vi+1j}} ∪ {A2|A2 → {Vii+1}{Vi+2j}} ∪
· · · ∪ {Al |Al → {Vik}{Vk+1j}} ∪ · · · ∪ {An−1|An−1 →
{Vij−2}{Vj−1j}} ∪ {An|An → {Vij−1}{Vjj}}
Compute all the Vij using the above eq. as:

1 Compute V11,V22, . . . ,Vnn

2 Compute V12,V23, . . . ,Vn−1n

3 Compute V13,V24, . . . ,Vn−2n

4 . . .
5 Compute V1n

If S ∈ V1n then w ∈ L(G) otherwise w /∈ L(G)

Dr. A K Yadav TM and LBA April 28, 2022 50/53

CYK Algorithm

CYK Algorithm

Exercise: Determine whether the string w = aabbb is in the
language generated by the grammar:

S → AB

A → BB|a

B → AB|b

Dr. A K Yadav TM and LBA April 28, 2022 51/53

Questions?
+91 9911375598, akyadav1@amity.edu

Thank you.

	The Turing Machine Model
	Representation of Turing Machines
	Language acceptability of Turing Machine
	Design of TM
	Variation of TM
	Universal TM
	Church's Machine
	Recursive and Recursively Enumerable Language
	Unrestricted Grammars
	Context Sensitive Language
	Linear Bounded Automata
	Construction of Grammar Corresponding to TM
	Construction of Grammar Corresponding to LBA
	CYK Algorithm

