
UNIT II

Ashok Kumar Yadav

Feb 2018

1 Logistic regression

The logistic model (or logit model) is a widely used statistical model that, in
its basic form, uses a logistic function to model a binary dependent variable;
many more complex extensions exist. In regression analysis, logistic regression
(or logit regression) is estimating the parameters of a logistic model; it is a form
of binomial regression. Mathematically, a binary logistic model has a depen-
dent variable with two possible values, such as pass/fail, win/lose, alive/dead or
healthy/sick; these are represented by an indicator variable, where the two val-
ues are labeled ”0” and ”1”. In the logistic model, the log-odds (the logarithm
of the odds) for the value labeled ”1” is a linear combination of one or more
independent variables (”predictors”); the independent variables can each be a
binary variable (two classes, coded by an indicator variable) or a continuous
variable (any real value). The corresponding probability of the value labeled
”1” can vary between 0 (certainly the value ”0”) and 1 (certainly the value
”1”), hence the labeling; the function that converts log-odds to probability is
the logistic function, hence the name. The unit of measurement for the log-odds
scale is called a logit, from logistic unit, hence the alternative names. Analogous
models with a different sigmoid function instead of the logistic function can also
be used, such as the probit model; the defining characteristic of the logistic
model is that increasing one of the independent variables multiplicatively scales
the odds of the given outcome at a constant rate, with each dependent variable
having its own parameter; for a binary independent variable this generalizes the
odds ratio. We can also say that the target variable is categorical. Based on
the number of categories, Logistic regression can be classified as:

1 binomial:
Target variable can have only 2 possible types: “0” or “1” which may
represent “win” vs “loss”, “pass” vs “fails”, “dead” vs “alive”, etc.

2 Multinomial:
Target variable can have 3 or more possible types which are not ordeR
(i.e. types have no quantitative significance) like “disease A” vs “disease
B” vs “disease C”.

1

Fig. 1 Logistic Function

3 Ordinal:
It deals with target variables with ordeR categories. For example, a test
score can be categorized as: “very poor”, “poor”, “good”, “very good”.
Here, each category can be given a score like 0, 1, 2, 3.

1.1 Logistic Function

Logistic regression is named for the function used at the core of the method,
the logistic function. The logistic function, also called the sigmoid function was
developed by statisticians to describe properties of population growth in ecology,
rising quickly and maxing out at the carrying capacity of the environment. It’s
an S-shaped curve that can take any real-valued number and map it into a value
between 0 and 1, but never exactly at those limits given below.

f(x) =
1

1 + e−x

Where e is the base of the natural logarithms and value is the actual numerical
value that you want to transform. Below Fig. ?? is a plot of the numbers
between -5 and 5 transformed into the range 0 and 1 using the logistic function.

1.2 Representation of Logistic Regression

Logistic regression uses an equation as the representation, very much like linear
regression. Input values (x) are combined linearly using weights or coefficient

2

values (referR to as the Greek capital letter Beta) to predict an output value (y).
A key difference from linear regression is that the output value being modeled
is a binary value (0 or 1) rather than a numeric value. Below is an example
logistic regression equation:

y =
e(bo+b1×x)

1 + e(bo+b1×x)
(1)

Where y is the predicted output, b0 is the bias or intercept term and b1 is
the coefficient for the single input value (x). Each column in your input data
has an associated b coefficient (a constant real value) that must be learned from
your training data. The actual representation of the model that you would store
in memory or in a file are the coefficients in the equation (the beta value or b’s).

1.3 Logistic Regression Predicts Probabilities

Logistic regression models the probability of the default class (e.g. the first
class). For example, if we are modeling people’s sex as male or female from
their height, then the first class could be male and the logistic regression model
could be written as the probability of male given a person’s height, or more
formally:

P (sex = male|height)

Written another way, we are modeling the probability that an input (X) belongs
to the default class (Y=1), we can write this formally as:

P (X) = P (Y = 1|X)

We’re predicting probabilities. I thought logistic regression was a classifica-
tion algorithm. Note that the probability prediction must be transformed into
a binary value (0 or 1) in order to actually make a probability prediction. More
on this later when we talk about making predictions. Logistic regression is a
linear method, but the predictions are transformed using the logistic function.
The impact of this is that we can no longer understand the predictions as a
linear combination of the inputs as we can with linear regression, for example,
continuing on from above, the model can be stated as:

p(X) =
e(b0+b1×X)

1 + e(b0+b1×X)

We don’t want to dive into the math too much, but we can turn around the
above equation as follows (remember we can remove the e from one side by
adding a natural logarithm (ln) to the other):

ln(
p(X)

1–p(X)
) = b0 + b1×X

This is useful because we can see that the calculation of the output on the right
is linear again (just like linear regression), and the input on the left is a log of

3

the probability of the default class. This ratio on the left is called the odds of
the default class (it’s historical that we use odds, for example, odds are used
in horse racing rather than probabilities). Odds are calculated as a ratio of
the probability of the event divided by the probability of not the event, e.g.
0.8/(1-0.8) which has the odds of 4. So we could instead write:

ln(odds) = b0 + b1×X

Because the odds are log transformed, we call this left hand side the log-odds
or the probit. It is possible to use other types of functions for the transform
(which is out of scope), but as such it is common to refer to the transform that
relates the linear regression equation to the probabilities as the link function,
e.g. the probit link function. We can move the exponent back to the right and
write it as:

odds = e(b0+b1×X)

All of this helps us understand that indeed the model is still a linear combina-
tion of the inputs, but that this linear combination relates to the log-odds of
the default class.

1.4 Learning the Logistic Regression Model

The coefficients (Beta values b) of the logistic regression algorithm must be
estimated from your training data. This is done using maximum-likelihood es-
timation. Maximum-likelihood estimation is a common learning algorithm used
by a variety of machine learning algorithms, although it does make assumptions
about the distribution of your data (more on this when we talk about preparing
your data). The best coefficients would result in a model that would predict a
value very close to 1 (e.g. male) for the default class and a value very close to
0 (e.g. female) for the other class. The intuition for maximum-likelihood for lo-
gistic regression is that a search procedure seeks values for the coefficients (Beta
values) that minimize the error in the probabilities predicted by the model to
those in the data (e.g. probability of 1 if the data is the primary class).
We are not going to go into the math of maximum likelihood. It is enough to
say that a minimization algorithm is used to optimize the best values for the
coefficients for your training data. This is often implemented in practice us-
ing efficient numerical optimization algorithm (like the Quasi-newton method).
When you are learning logistic, you can implement it yourself from scratch using
the much simpler gradient descent algorithm.

1.5 Making Predictions with Logistic Regression

Making predictions with a logistic regression model is as simple as plugging in
numbers into the logistic regression equation and calculating a result. Let’s
make this concrete with a specific example. Let’s say we have a model that can
predict whether a person is male or female based on their height (completely

4

fictitious). Given a height of 150cm is the person male or female.
We have learned the coefficients of b0 = -100 and b1 = 0.6. Using the equation
?? above we can calculate the probability of male given a height of 150cm or
more formally P (male|height = 150)

y =
e(−100+0.6×150)

1 + e(−100+0.6×150)
= 0.0000453978687

y = 0.0000453978687 means probability that the person is a male is nearly zero.
In practice we can use the probabilities directly. Because this is classification
and we want a crisp answer, we can snap the probabilities to a binary class
value, for example: {

0 if p(male) < 0.5

1 if p(male) >= 0.5

Now that we know how to make predictions using logistic regression, let’s look
at how we can prepare our data to get the most from the technique.

1.6 Prepare Data for Logistic Regression

The assumptions made by logistic regression about the distribution and rela-
tionships in your data are much the same as the assumptions made in linear
regression. Much study has gone into defining these assumptions and precise
probabilistic and statistical language is used. My advice is to use these as
guidelines or rules of thumb and experiment with different data preparation
schemes. Ultimately in predictive modeling machine learning projects you are
laser focused on making accurate predictions rather than interpreting the re-
sults. As such, you can break some assumptions as long as the model is robust
and performs well.

� Binary Output Variable: This might be obvious as we have already
mentioned it, but logistic regression is intended for binary (two-class) clas-
sification problems. It will predict the probability of an instance belonging
to the default class, which can be snapped into a 0 or 1 classification.

� Remove Noise: Logistic regression assumes no error in the output vari-
able (y), consider removing outliers and possibly misclassified instances
from your training data.

� Gaussian Distribution: Logistic regression is a linear algorithm (with
a non-linear transform on output). It does assume a linear relationship
between the input variables with the output. Data transforms of your
input variables that better expose this linear relationship can result in a
more accurate model. For example, you can use log, root, Box-Cox and
other univariate transforms to better expose this relationship.

� Remove Correlated Inputs: Like linear regression, the model can over-
fit if you have multiple highly-correlated inputs. Consider calculating the

5

pairwise correlations between all inputs and removing highly correlated
inputs.

� Fail to Converge: It is possible for the expected likelihood estimation
process that learns the coefficients to fail to converge. This can happen if
there are many highly correlated inputs in your data or the data is very
sparse (e.g. lots of zeros in your input data).

1.7 Pros and Cons of Logistic Regression

Pros:
Logistic regression is designed for this purpose! The dependent variable must
be categorical, and the explanatory variables can take any form; both of which
are satisfied by your problem.
Linear combination of parameters ββ and the input vector will be incRibly easy
to compute. Given that your explanatory variables are also binary, you should
be able to partition your input space by outcome quite well.
Cons:
You say several binary predictors. Going off the dictionary definition of, ”More
than two, but not many.” - logistic regression might be overkill.

2 Perceptron

Perceptron is a single layer neural network. It is a linear classifier. It is used
in supervised learning. It helps to classify the given input data. A perceptron
is a simple model of a biological neuron in an artificial neural network. It is
also the name of an early algorithm for supervised learning of binary classifiers.
Machine learning algorithms find and classify patterns by many different means.
perception is an algorithm for supervised learning of binary classifiers. A binary
classifier is a function which can decide whether or not an input, represented
by a vector of numbers, belongs to some specific class. It is a type of linear
classifier, i.e. a classification algorithm that makes its predictions based on a
linear predictor function combining a set of weights with the feature vector.
The perceptron consists of 4 parts as shown in Fig. ?? :

1. Input values or One input layer

2. Weights and Bias

3. Net sum

4. Activation Function

2.1 How does a Perceptron work?

Perception is not the Sigmoid neuron we use in ANNs or any deep learning
networks today. The perceptron model is a more general computational model

6

Fig. 2 Parts of Perceptron

than McCulloch-Pitts neuron. It takes an input, aggregates it (weighted sum)
and returns 1 only if the aggregated sum is more than some threshold else
returns 0. Rewriting the threshold as shown above and making it a constant
input with a variable weight, we would end up with something like the following:

� All the inputs x are multiplied with their weights w.

� Then Add all the multiplied values and call them Weighted Sum
∑

.

� Apply that weighted sum to the correct Activation Function.

A single perceptron can only be used to implement linearly separable functions.
It takes both real and boolean inputs and associates a set of weights to them,
along with a bias (threshold). We learn the weights, we get the function Fig. ??.

y =

{
1 if

∑n
i=1 wi × xi − θ ≥ 0

0 if
∑n
i=1 wi × xi − θ < 0

2.2 Perceptron Learning Algorithm

Our goal is to find the w vector that can perfectly classify positive inputs and
negative inputs in our data. straight to the. Here is the algorithm:

7

Fig. 3 Working of Perceptron

Step 1. P ← input with label 1

Step 2. N ← input with label 0

Step 3. Initialize w randomly

Step 4. While !convergence do

Pick random x ∈ P ∪N
if x ∈ P and w.x < 0 then

w = w + x

end

if x ∈ N and w.x ≥ 0 then

w = w − x
end

end

The algorithm converges when all the inputs are classified correctly. We initialize
w with some random vector. We then iterate over all the examples in the data,
P ∪ N both positive and negative examples. Now if an input x belongs to P,
ideally what should the dot product w.x be? It should be greater than or equal
to 0 because that’s the only thing what our perceptron wants at the end of the
day so let’s give it that. And if x belongs to N, the dot product must be less
than 0.

Case 1: When x belongs to P and its dot product w.x < 0

8

Case 2: When x belongs to N and its dot product w.x ≥ 0

Only for these cases, we are updating our randomly initialized w. Otherwise,
we don’t touch w at all because Case 1 and Case 2 are violating the very rule
of a perceptron. So we are adding x to w in Case 1 and subtracting x from w
in Case 2.

3 Exponential family

Exponential families are a broad class of probability distributions which includes
many basic distributions such as Bernoulli’s and Gaussians, as well as Markov
random fields. In all of these distributions can be represented in terms of log-
linear functions of sufficient statistics. A distribution over a random variable X
is in the exponential family if we can write it as :

P (x|η) = h(x)exp(ηTT (x)−A(η))

Here, η is the vector of natural parameters, T is the vector of sufficient statistics,
and A is the log partition function.
Exponential families are useful in many fields such as:

� They unify many of the most important, widely-used statistical models
such as the Normal, Binomial, Poisson, and Gamma into one framework.

� No matter how massive the data set is, there is a sufficient statistic of
a fixed dimensionality. Under some regularity conditions (such as that
the support does not depend on the parameter), this is only true for
exponential families.

� You can easily see what the minimal sufficient statistic for the model
is, and better yet it will be a complete sufficient statistic (under some
regularity conditions). Usually completeness of a statistic is hard to prove,
but in an exponential family you get it almost for free. This paves the way
to be able to apply Basu’s theorem, for example. Moreover, the complete
sufficient statistic itself comes from an exponential family.

� Exponential families maximize entropy, among distributions satisfying cer-
tain natural constraints.

� Conjugate distributions are easy to write down, and the conjugate distri-
butions come from an exponential family.

� Maximum likelihood estimation (MLE) behaves nicely in this setting, and
has a very simple intuitive interpretation: set the observed value of the
natural sufficient statistic equal to its expected value. The log-likelihood
function will be concave, so we don’t get nasty multimodal situations such
as can occur in a Cauchy location problem.

9

3.1 Examples of exponential family

Here are some examples of distributions that are in the exponential family:-

3.1.1 Normal/Gaussian distribution

f(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

where
µ is the mean or expectation of the distribution (and also its median and mode),
σ is the standard deviation, and
σ2 is the variance.

3.1.2 Poisson distribution

An event can occur 0, 1, 2, ... times in an interval. The average number of
events in an interval is designated λ. λ is the event rate, also called the rate
parameter. The probability of observing k events in an interval is given by the
equation:

P (k events in interval) = e−λ
λk

k!

where
λ is the average number of events per interval
e is the number 2.71828 ... (Euler’s number) the base of the natural logarithms
k takes values 0, 1, 2, ...
k! = k × (k − 1)× (k − 2)× ...× 2× 1 is a factorial of k.
This equation is the probability mass function (PMF) for a Poisson distribution.

3.1.3 Exponential distribution

The probability density function (pdf) of an exponential distribution is

f(x;λ) =

{
λe−λx x ≥ 0,

0 x < 0.

Where
λ > 0 is the parameter of the distribution, often called the rate parameter. The
distribution is supported on the interval [0,∞). If a random variable X has this
distribution, we write X ∼ Exp(λ).

10

3.1.4 Bernoulli distribution

3.1.5 Binomial distribution

3.1.6 Multinomial distribution

3.1.7 Gamma distribution

3.2 Properties

The exponential family has the following property (called the moment generat-
ing property):

1 The d’th derivative of the log partition equals the d’th centeR moment
of the suffcient statistic (if you have a vector of sufficient statistics, then
∂dA/∂ηdi = E[T (x)di]). E.g., the First derivative of the log partition
function is the mean of T(X); the 2nd is its variance.

2 This implies that the log partition function is convex, because its second
derivative must be positive, since variance is always non-negative.

3 This further implies that: we can write the first derivative of the log
partition function as a function of the natural parameter (aka the canonical
parameter), set it equal to the mean, and then invert to solve for the
natural parameter in terms of the mean (aka the moment parameter). In
symbols: η = Ψ(µ).

4 Doing Maximum likelihood estimation (MLE) on the exponential family
is the same as doing moment matching. This follows by:

a Writing down the log likelihood of a generic exponential family mem-
ber: const+ ηT (

∑n
i=1 T (xi))− nA(η).

b Taking the gradient w.r.t. η :
∑n
i=1 T (xi)− n∇ηA(η).

c Setting equal to zero and solving for ∇ηA :
∇ηA = 1

n

∑n
i=1 T (xi)⇒ µ = 1

n

∑n
i=1 T (xi)⇒ estimated moment =

sample moment.

4 Generative learning algorithms

Consider a classification problem in which we want to learn to distinguish be-
tween elephants (y = 1) and dogs (y = 0), based on some features of an animal.
Given a training set, an algorithm like logistic regression or the perceptron al-
gorithm (basically) tries to find a straight line - that is, a decision boundary
that separates the elephants and dogs. Then, to classify a new animal as either
an elephant or a dog, it checks on which side of the decision boundary it falls,
and makes its prediction accordingly.

11

Here’s a different approach. First, looking at elephants, we can build a
model of what elephants look like. Then, looking at dogs, we can build a sep-
arate model of what dogs look like. Finally, to classify a new animal, we can
match the new animal against the elephant model, and match it against the dog
model, to see whether the new animal looks more like the elephants or more like
the dogs we had seen in the training set.

Algorithms that try to learn p(y|x) directly (such as logistic regression), or
algorithms that try to learn mappings directly from the space of inputs X to
the labels {0, 1}, (such as the perceptron algorithm) are called discriminative
learning algorithms. Here, we’ll talk about algorithms that instead try to model
p(x|y) (and p(y)). These algorithms are called generative learning algorithms.
Generative approaches try to build a model of the positives and a model of
the negatives. You can think of a model as a “blueprint” for a class. A deci-
sion boundary is formed where one model becomes more likely. As these create
models of each class they can be used for generation .To create these models, a
generative learning algorithm learns the joint probability distribution P (x, y).
The joint probability can be written as:

P (x, y) = P (x|y).P (y) (2)

Also, using Bayes’ Rule we can write:

P (y|x) =
P (x|y).P (y)

P (x)
(3)

Since, to predict a class label y, we are only interested in the argmax , the
denominator can be removed from Eq. ??. Hence to predict the label y from
the training example x, generative models evaluate:

f(x) = arg max
y

P (y|x) = arg max
y

P (x|y).P (y) (4)

The most important part in the above is P (x|y). This is what allows the model
to be generative. P (x|y) means – what x (features) are there given class y.
Hence, with the joint probability distribution function Eq. ??, given a y, you
can calculate (“generate”) its corresponding x. For this reason they are called
generative models. Generative learning algorithms make strong assumptions on
the data. To explain this let’s look at a generative learning algorithm called
Gaussian Discriminant Analysis (GDA)

5 Gaussian discriminant analysis

The first generative learning algorithm that we’ll look at is Gaussian discrim-
inant analysis (GDA). In this model, we’ll assume that p(x|y) is distributed
according to a multivariate normal distribution. When we have a classification
problem in which the input features x are continuous-valued random variables,

12

we can then use the Gaussian Discriminant Analysis (GDA) model, which mod-
els p(x|y) using a multivariate normal distribution. The model is:

y ∼ Bernoulli(φ)

x|y = 0 ∼ N
(
µ0,
∑)

x|y = 1 ∼ N
(
µ1,
∑)

Writing out the distributions, this is:

p(y) = φy(1− φ)1−y

p(x|y = 0) =
1

(2π)
n/2 |

∑
|1/2

exp

(
−1

2
(x− µ0)

T
−1∑

(x− µ0)

)

p(x|y = 1) =
1

(2π)
n/2 |

∑
|1/2

exp

(
−1

2
(x− µ1)

T
−1∑

(x− µ1)

)
Here, the parameters of our model are φ,

∑
, µ0 and µ1. (Note that while there

are two different mean vectors µ0 and µ1, this model is usually applied using
only one covariance matrix

∑
). The log-likelihood of the data is given by

`
(
φ, µ0, µ1,

∑)
= logΠm

i=1

(
xi, yi;φ, µ0, µ1,

∑)
= logΠm

i=1

(
xi|yi;φ, µ0, µ1,

∑)
p
(
xi;φ

)
By maximizing ` with respect to the parameters, we find the maximum likeli-
hood estimate of the parameters to be:

φ =
1

m

m∑
i=1

1{yi = 1}

µ0 =

∑m
i=1 1{yi = 0}xi∑m
i=1 1{yi = 0}

µ1 =

∑m
i=1 1{yi = 1}xi∑m
i=1 1{yi = 1}∑

=
1

m

m∑
i=1

(
xi − µyi

) (
xi − µyi

)T
Pictorially, what the algorithm is doing can be seen in Fig. ?? as follows: Shown
in the Fig. ?? are the training set, as well as the contours of the two Gaussian
distributions that have been fit to the data in each of the two classes. Note
that the two Gaussians have contours that are the same shape and orientation,
since they share a covariance matrix

∑
, but they have different means µ0 and

µ1. Also shown in the figure is the straight line giving the decision boundary at
which p(y = 1|x) = 0.5. On one side of the boundary, we’ll predict y = 1 to be
the most likely outcome, and on the other side, we’ll predict y = 0.

13

Fig. 4 GDA Model

14

6 Naive Bayes

Naive Bayes is a probabilistic machine learning algorithm based on the Bayes
Theorem, used in a wide variety of classification tasks. They are probabilistic,
which means that they calculate the probability of each tag for a given text, and
then output the tag with the highest one. Typical applications include filtering
spam, classifying documents, sentiment prediction etc. It is based on the works
of Rev. Thomas Bayes (1702–61).
Naive Bayes algorithm is the algorithm that learns the probability of an object
with certain features belonging to a particular group/class. In short, it is a
probabilistic classifier. The Naive Bayes algorithm is called “naive” because it
makes the assumption that the occurrence of a certain feature is independent
of the occurrence of other features. For instance, if you are trying to identify
a fruit based on its color, shape, and taste, then an orange coloR, spherical,
and tangy fruit would most likely be an orange. Even if these features depend
on each other or on the presence of the other features, all of these properties
individually contribute to the probability that this fruit is an orange and that
is why it is known as “naive.”

6.1 Bayes’ theorem

The basis of Naive Bayes algorithm is Bayes’ theorem or alternatively known
as Bayes’ rule or Bayes’ law. It gives us a method to calculate the conditional
probability, i.e., the probability of an event based on previous knowledge avail-
able on the events. More formally, Bayes’ Theorem is stated as the following
equation:

P (A|B) =
P (B|A)P (A)

P (B)

The components of the above statement are:

- P (A|B): Probability (conditional probability) of occurrence of event A
given the event B is true.

- P (A) and P (B): Probabilities of the occurrence of event A and B respec-
tively.

- P (B|A): Probability of the occurrence of event B given the event A is
true.

The terminology in the Bayesian method of probability (more commonly used)
is as follows:

- A is called the proposition and B is called the evidence.

- P (A) is called the prior probability of proposition and P (B) is called the
prior probability of evidence.

15

- P (A|B) is called the posterior.

- P (B|A) is the likelihood.

This sums the Bayes’ theorem as

Posterior =
(Likelihood)(Proposition prior probability)

(Evidence prior probability)

6.2 Example Bayes’ theorem

Suppose you have to draw a single card from a standard deck of 52 cards. Now
the probability that the card is a Queen is P (Queen) = 4

52 = 1
13 . If you are

given evidence that the card that you have picked is a face card, the posterior
probability P (Queen|Face) can be calculated using Bayes’ Theorem as follows:

P (Queen|Face) =
P (Face|Queen)P (Queen)

P (Face)

Now P (Face|Queen) = 1 because given the card is Queen, it is definitely a face
card. We have already calculated P (Queen). The only value left to calculate is
P (Face), which is equal to 3

13 as there are three face cards for every suit in a
deck. Therefore,
Now

P (Face|Queen) = 1

P (Queen) =
1

13

P (Face) =
3

13

So

P (Queen|Face) =
1× 1

13
3
13

=
1

3

6.3 Bayes’ Theorem for Naive Bayes Algorithm

In a machine learning classification problem, there are multiple features and
classes, say, C1, C2, . . . , Ck. The main aim in the Naive Bayes algorithm is to cal-
culate the conditional probability of an object with a feature vector x1, x2, . . . , xn
belongs to a particular class Ci,

P (Ci|x1, x2, . . . , xn) =
P (x1, x2, . . . , xn|Ci)P (Ci)

P (x1, x2, . . . , xn)
for 1 ≤ i ≤ k

16

Now, the numerator of the fraction on right-hand side of the equation above is
P (x1, x2, . . . , xn|Ci)P (Ci) = P (x1, x2, . . . , xn, Ci)

P (x1, x2, . . . , xn, Ci) = P (x1|x2, . . . , xn, Ci).P (x2, . . . , xn, Ci)

= P (x1|x2, . . . , xn, Ci).P (x2|x3 . . . , xn, Ci).P (x3, . . . , xn, Ci)

= . . .

= P (x1|x2, . . . , xn, Ci).P (x2|x3, . . . , xn, Ci) . . . P (xn−1|xn, Ci).P (xn|Ci).P (Ci)

The conditional probability term P (xj |xj+1, . . . , xn, Ci) becomes P (xj |Ci) be-
cause of the assumption that features are independent. From the calculation
above and the independence assumption, the Bayes theorem boils down to the
following easy expression:

P (Ci|x1, x2, . . . , xn) =
(Πn

j=1P (xj |Ci)).P (Ci)

P (x1, x2, . . . , xn)
for 1 ≤ i ≤ k

The expression P (x1, x2, . . . , xn) is constant for all the classes, we can simply
say that

P (Ci|x1, x2, . . . , xn) ∝ (Πn
j=1P (xj |Ci)).P (Ci) for 1 ≤ i ≤ k

6.4 Example of the algorithm

Let us take a simple example to understand the functionality of the algorithm.
Suppose, we have a training data set of 1200 fruits. The features in the data
set are these: is the fruit Red(R) or not, is the fruit long(L) or not, and is the
fruit Sweet(S) or not. There are three different classes: Mango(M), Banana(B),
and Others.

� Step 1 Create a frequency table ?? for all the features against the different
classes. What can we conclude from the above table?

Table 1 Frequency table for all the features

Name Red(R) Sweet(S) Long(L) Total

Mango(M) 350 450 0 650

Banana(B) 400 300 350 400

Others 50 100 50 150

Total 800 850 400 1200

� Out of 1200 fruits, 650 are mangoes, 400 are bananas, and 150 are
others.

17

� 350 of the total 650 mangoes are Red and the rest are not and so on.

� 800 fruits are Red, 850 are sweet and 400 are long from a total of
1200 fruits.

Let’s say you are given with a fruit which is Red, sweet, and long and you
have to check the class to which it belongs.

� Step 2 Draw the likelihood table ?? for the features against the classes.

Table 2 Likelihood table for the feature

Name Red(R) Sweet(S) Long(L) Total

Mango(M) 350
800 = P (M |R) 450

850
0

400
650
1200 = P (M)

Banana(B) 400
800

300
850

350
400

400
1200

Others 50
800

100
850

50
400

150
1200

Total 800 = P (R) 850 400 1200

� Step 3 Calculate the conditional probabilities for all the classes, i.e., the
following in our example:

P (M |R,S, L) =
P (R|M).P (S|M).P (L|M).P (M)

P (R,S, L)

= 0

P (B|R,S, L) =
P (R|B).P (S|B).P (L|B).P (B)

P (R,S, L)

=
400× 300× 350× 400

400× 400× 400× 1200× P (Evidence)

=
0.21875

P (Evidence)

P (Others|R,S, L) =
P (R|Others).P (S|Others).P (L|Others).P (Others)

P (R,S, L)

=
50× 100× 50× 150

150× 150× 150× 1200× P (Evidence)

=
0.00926

P (Evidence)

� Step 4 Calculate maxiP (Ci|x1, x2, . . . , xn). In our example, the maxi-
mum probability is for the class banana, therefore, the fruit which is long,
sweet and R is a banana by Naive Bayes Algorithm. In a nutshell, we say
that a new element will belong to the class which will have the maximum
conditional probability described above.

18

6.5 Variations of the algorithm

There are multiple variations of the Naive Bayes algorithm depending on the
distribution of P (xj |Ci). Three of the commonly used variations are:

� Gaussian: The Gaussian Naive Bayes algorithm assumes distribution of
features to be Gaussian or normal, i.e.

P (xj |Ci) =
1√

2πσ2Ci
exp

(
− (xj − µCj)2

2σ2Ci

)

� Multinomial: The Multinomial Naive Bayes algorithm is used when the
data is distributed multinomially, i.e. multiple occurrences matter a lot.

� Bernoulli: The Bernoulli algorithm is used when the features in the data
set are binary-valued. It is helpful in spam filtration and adult content
detection techniques.

6.6 Pros and Cons of the algorithm

Every coin has two sides. So does the Naive Bayes algorithm. It has advantages
as well as disadvantages, and they are listed below:
Pros

� It is a relatively easy algorithm to build and understand.

� It is faster to predict classes using this algorithm than many other classi-
fication algorithms.

� It can be easily trained using a small data set.

Cons

� If a given class and a feature have 0 frequency, then the conditional proba-
bility estimate for that category will come out as 0. This problem is known
as the “Zero Conditional Probability Problem.” This is a problem because
it wipes out all the information in other probabilities too. There are sev-
eral sample correction techniques to fix this problem such as “Laplacian
Correction.”

� Another disadvantage is the very strong assumption of independence class
features that it makes. It is near to impossible to find such data sets in
real life.

19

Fig. 5 Three simple graphs

Fig. 6 Classification of Fig. ??

7 Support vector machine

Support-vector machines (SVMs, also support-vector networks) are supervised
learning models with associated learning algorithms that analyze data used for
classification and regression analysis. Given a set of training examples, each
marked as belonging to one or the other of two categories, an SVM training al-
gorithm builds a model that assigns new examples to one category or the other,
making it a non-probabilistic binary linear classifier (although methods such
as Platt scaling exist to use SVM in a probabilistic classification setting). An
SVM model is a representation of the examples as points in space, mapped so
that the examples of the separate categories are divided by a clear gap that is
as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall.

In addition to performing linear classification, SVMs can efficiently perform
a non-linear classification using what is called the kernel trick, implicitly map-
ping their inputs into high-dimensional feature spaces.

When data is unlabelled, supervised learning is not possible, and an unsuper-
vised learning approach is required, which attempts to find natural clustering
of the data to groups, and then map new data to these formed groups. The
support-vector clustering algorithm, created by Hava Siegelmann and Vladimir
Vapnik, applies the statistics of support vectors, developed in the support vec-
tor machines algorithm, to categorize unlabelled data, and is one of the most
widely used clustering algorithms in industrial applications.

Given a training sample, the support vector machine constructs a hyperplane
as the decision surface in such a way that the margin of separation between
positive and negative examples is maximized.

20

Fig. 7 Hyperplanes in 2D and 3D feature space

7.1 Optimal hyper planes

To separate the two classes of data points, there are many possible hyperplanes
that could be chosen. Our objective is to find a plane that has the maximum
margin, i.e the maximum distance between data points of both classes. Max-
imizing the margin distance provides some reinforcement so that future data
points can be classified with more confidence. Hyperplanes are decision bound-
aries that help classify the data points. Data points falling on either side of
the hyperplane can be attributed to different classes. Also, the dimension of
the hyperplane depends upon the number of features. If the number of input
features is 2, then the hyperplane is just a line Fig. ??. If the number of input
features is 3, then the hyperplane becomes a three-dimensional plane Fig. ??.
It becomes difficult to imagine when the number of features exceeds 3. Support
vectors are data points that are closer to the hyperplane and influence the posi-
tion and orientation of the hyperplane Fig. ??. Using these support vectors, we
maximize the margin of the classifier. Deleting the support vectors will change
the position of the hyperplane. These are the points that help us build our SVM
Fig. ??

7.2 Kernels

The learning of the hyperplane in linear SVM is done by transforming the
problem using some linear algebra. This is where the kernel plays role. The
SVM algorithm is implemented in practice using a kernel. The learning of
the hyperplane in linear SVM is done by transforming the problem using some
linear algebra, which is out of the scope of this introduction to SVM. A powerful
insight is that the linear SVM can be rephrased using the inner product of any
two given observations, rather than the observations themselves. The inner
product between two vectors is the sum of the multiplication of each pair of
input values. For example, the inner product of the vectors [2, 3] and [5, 6] is

21

Fig. 8 Hyperplanes in 2D and 3D feature space

Fig. 9 Example of Optimal hyper planes

22

2 ∗ 5 + 3 ∗ 6 or 28. The equation for making a prediction for a new input using
the dot product between the input x and each support vector xi is calculated
as follows:

f(x) = B0 +
∑

(ai × (x, xi))

This is an equation that involves calculating the inner products of a new input
vector x with all support vectors in training data. The coefficients B0 and ai (for
each input) must be estimated from the training data by the learning algorithm.

7.2.1 Linear Kernel

The Linear kernel is the simplest kernel function. It is given by the inner product
< x, y > plus an optional constant c. Kernel algorithms using a linear kernel are
often equivalent to their non-kernel counterparts, i.e. KPCA with linear kernel
is the same as standard PCA.

k(x, y) = xT y + c

7.2.2 Polynomial Kernel

The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well
suited for problems where all the training data is normalized.

k(x, y) = (αxT y + c)d

Adjustable parameters are the slope α, the constant term c and the polynomial
degree d.

7.2.3 Radial Kernel

Finally, we can also have a more complex radial kernel. For example:

k(x, y) = exp
(
−γ‖x–y‖2

)
Where γ is a parameter that must be specified to the learning algorithm. A
good default value for γ is 0.1, where γ is often 0 < γ < 1. The radial kernel is
very local and can create complex regions within the feature space, like closed
polygons in two-dimensional space.

7.2.4 Gaussian Kernel

The Gaussian kernel is an example of radial basis function kernel.

k(x, y) = exp

(
−‖x− y‖

2

2σ2

)
Alternatively, it could also be implemented using

k(x, y) = exp
(
−γ‖x− y‖2

)
23

The adjustable parameter σ plays a major role in the performance of the kernel,
and should be carefully tuned to the problem at hand. If overestimated, the
exponential will behave almost linearly and the higher-dimensional projection
will start to lose its non-linear power. In the other hand, if underestimated,
the function will lack regularization and the decision boundary will be highly
sensitive to noise in training data.

7.2.5 Exponential Kernel

The exponential kernel is closely related to the Gaussian kernel, with only the
square of the norm left out. It is also a radial basis function kernel.

k(x, y) = exp

(
−‖x− y‖

2σ2

)
7.2.6 Laplacian Kernel

The Laplace Kernel is completely equivalent to the exponential kernel, except
for being less sensitive for changes in the σ parameter. Being equivalent, it is
also a radial basis function kernel.

k(x, y) = exp

(
−‖x− y‖

σ

)
It is important to note that the observations made about the σ parameter for
the Gaussian kernel also apply to the Exponential and Laplacian kernels.

7.2.7 Sigmoid Kernel

The Hyperbolic Tangent Kernel is also known as the Sigmoid Kernel and as
the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel comes from the
Neural Networks field, where the bipolar sigmoid function is often used as an
activation function for artificial neurons.

k(x, y) = tanh(αxT y + c)

It is interesting to note that a SVM model using a sigmoid kernel function
is equivalent to a two-layer, perceptron neural network. This kernel was quite
popular for support vector machines due to its origin from neural network theory.
Also, despite being only conditionally positive definite, it has been found to
perform well in practice. There are two adjustable parameters in the sigmoid
kernel, the slope α and the intercept constant c. A common value for alpha is
1
N , where N is the data dimension

7.3 Model selection

Choosing the most appropriate kernel highly depends on the problem at hand
– and fine tuning its parameters can easily become a tedious and cumbersome

24

task because it depends on what we are trying to model. A polynomial kernel,
for example, allows us to model feature conjunctions up to the order of the
polynomial. Radial basis functions allows to pick out circles (or hyperspheres)
– in constrast with the Linear kernel, which allows only to pick out lines (or
hyperplanes). The motivation behind the choice of a particular kernel can be
very intuitive and straightforward depending on what kind of information we
are expecting to extract about the data.

7.4 Feature selection

Feature selection is the method of reducing data dimension while doing pre-
dictive analysis. One major reason is that machine learning follows the rule
of “garbage in-garbage out” and that is why one needs to be very concerned
about the data that is being fed to the model. The feature selection techniques
simplify the machine learning models in order to make it easier to interpret
by the researchers. It mainly eliminates the effects of the curse of dimension-
ality. Besides, this technique reduces the problem of overfitting by enhancing
the generalisation in the model. Thus it helps in better understanding of data,
improves prediction performance, reducing the computational time as well as
space which is required to run the algorithm The feature selection problem can
be addressed in the following two ways:
(1) given a fixed m << n , find the m features that give the smallest expected
generalization error γ; or
(2) given a maximum allowable generalization error γ, find the smallest m.
In both of these problems the expected generalization error γ is of course un-
known, and thus must be estimated. Note that choices of m in problem (1) can
usually can be reparameterized as choices of γ in problem (2). Different feature
selection methods are :

� Filter Method

� Wrapper Method

� Embedded Method

7.5 Applications

SVMs can be used to solve various real-world problems:

� SVMs are helpful in text and hypertext categorization, as their application
can significantly reduce the need for labeled training instances in both the
standard inductive and transductive settings. Some methods for shallow
semantic parsing are based on support vector machines.

� Classification of images can also be performed using SVMs. Experimental
results show that SVMs achieve significantly higher search accuracy than
traditional query refinement schemes after just three to four rounds of
relevance feedback. This is also true for image segmentation systems,

25

including those using a modified version SVM that uses the privileged
approach as suggested by Vapnik.

� Hand-written characters can be recognized using SVM.

� The SVM algorithm has been widely applied in the biological and other
sciences. They have been used to classify proteins with up to 90% of the
compounds classified correctly. Permutation tests based on SVM weights
have been suggested as a mechanism for interpretation of SVM models.
Support-vector machine weights have also been used to interpret SVM
models in the past. Posthoc interpretation of support-vector machine
models in order to identify features used by the model to make predictions
is a relatively new area of research with special significance in the biological
sciences.

� Face detection – SVMc classify parts of the image as a face and non-face
and create a square boundary around the face.

� Text and hypertext categorization – SVMs allow Text and hypertext cate-
gorization for both inductive and transductive models. They use training
data to classify documents into different categories. It categorizes on the
basis of the score generated and then compares with the threshold value.

� Classification of images – Use of SVMs provides better search accuracy
for image classification. It provides better accuracy in comparison to the
traditional query-based searching techniques.

� Bioinformatics – It includes protein classification and cancer classification.
We use SVM for identifying the classification of genes, patients on the basis
of genes and other biological problems. Protein fold and remote homology
detection – Apply SVM algorithms for protein remote homology detection.

� Generalized predictive control(GPC) – Use SVM based GPC to control
chaotic dynamics with useful parameters

7.6 Pros and Cons

Pros

� Based on nice theory

� Excellent generalization properties

� Objective function has no local minima

� Can be used to find non linear discriminant functions

� Complexity of the classifier is characterized by the number of support
vectors rather than the dimensionality of the transformed space

Cons

26

� It’s not clear how to select a kernel function in a principled manner

� Tends to be slower than other methods

8 Combining classifier

Experimental observations confirm that a given learning algorithm outperforms
all others for a specific problem or for a exact subset of the input data, but it is
abnormal to find a single expert achieving the best results on the overall prob-
lem domain. As a consequence the multiple learner systems try to exploit the
locally different behaviour of the base classifiers to improve the accuracy and
the reliability of the overall inductive learning system. There are also hopes
that if some learner fails, the overall system can recover.

The aim of ensemble generation is a set of classifiers such that they are at
the same time as different to each other as possible while remaining as accurate
as possible when viewed individually. Independence (or diversity) is important
because ensemble learning can only get better on individual classifiers when
their errors are not correlated. Obviously these two aims (maximum accuracy
of the individual predictors and minimum correlation of incorrect predictions)
conflict with each other, as two perfect classifiers would be rather alike, and two
maximally different classifiers could not at the same time both be very accurate.

The final goal of classifier combination is to create a classifier which operates
on the same type of input as the base classifiers and separates the same types of
classes. Classifier combination techniques operate on the outputs of individual
classifiers and usually fall into one of two categories. In the first approach
the outputs are treated as inputs to a generic classifier, and the combination
algorithm is created by training this, sometimes called ‘secondary’, classifier.

8.1 Types of Combined Classifiers

� Type I (abstract level): This is the lowest level since a classifier pro-
vides the least amount of information on this level. Classifier output is
merely a single class label or an unordered set of candidate classes.

� Type II (rank level): Classifier output on the rank level is an ordered
sequence of candidate classes, the so-called n-best list. The candidate class
at the first position is the most likely class, while the class positioned at
the end of the list is the most unlikely. Note that there are no confidence
values attached to the class labels on rank level. Only their position in
the n-best list indicates their relative likelihood.

� Type III (measurement level): In addition to the ordered n-best lists
of candidate classes on the rank level, classifier output on the measurement
level has confidence values assigned to each entry of the n-best list. These

27

confidences, or scores, can be arbitrary real numbers, depending on the
classification architecture used. The measurement levels.

8.2 Bagging

A lot of research has been concentrated on improving single-classifier systems
mainly because of their lack in sufficient resources for simultaneously developing
several different classifiers. A simple method for generating multiple classifiers
in those cases is to run several training sessions with the same single-classifier
system and different subsets of the training set, or slightly modified classifier
parameters. Each training session then creates an individual classifier. The
first systematic approach to this idea was proposed by Leo Breiman back in the
90s and became popular under the name “Bagging.” This method draws the
training sets with replacement from the original training set, each set resulting
in a slightly different classifier after training. This technique is one of the several
bootstrap techniques used for generating individual training sets and aims at
reducing the error of statistical estimators. In practice, bagging has shown
good results. However, the performance gains are usually small when bagging is
applied to weak classifiers. In these cases, boosting which is another technique
can be applied.

8.3 Boosting - Ada Boost algorithm

Boosting deals with the question whether an almost randomly guessing classi-
fier can be boosted into an arbitrarily accurate learning algorithm. Boosting
attaches a weight to each instance in the training set and these weights are up-
dated after each training cycle according to the performance of the classifier on
the corresponding training samples. Initially, all weights are set equally, but on
each round, the weights of incorrectly classified samples are increased so that
the classifier is forced to focus on the hard examples in the training set.

A very popular type of boosting is AdaBoost (Adaptive Boosting), which
was introduced by Freund and Schapire in 1995 to expand the boosting ap-
proach introduced by Schapire. The AdaBoost algorithm generates a set of
classifiers and votes them. It changes the weights of the training samples based
on classifiers previously built (trials). The goal is to force the final classifiers to
minimize expected error over different input distributions. The final classifier is
formed using a weighted voting scheme.

AdaBoost is best used to boost the performance of decision trees on binary
classification problems. AdaBoost was originally called AdaBoost.M1 by the
authors of the technique Freund and Schapire. More recently it may be referred
to as discrete AdaBoost because it is used for classification rather than regres-
sion. AdaBoost can be used to boost the performance of any machine learning
algorithm. It is best used with weak learners. These are models that achieve
accuracy just above random chance on a classification problem. The most suited

28

and therefore most common algorithm used with AdaBoost are decision trees
with one level. Because these trees are so short and only contain one decision
for classification, they are often called decision stumps. Each instance in the
training dataset is weighted. The initial weight is set to:

weight(xi) =
1

n

Where xi is the ith training instance and n is the number of training instances.
The AdaBoost algorithm

1 Input: S = {(x1, y1), . . . , (xN , yN)}, Number of Iterations T

2 Initialize: d
(1)
n = 1

N for all n = 1, . . . , N

3 Do for t = 1, . . . , T

a Train classifier with respect to the weighted sample set {S, dt} and
obtain hypothesis ht : x 7→ {−1,+1} i.e. ht = L (S, dt)

b Calculate the weighted training error εt of ht:

εt =

N∑
n=1

d(t)n I (yn 6= ht(xn))

c Set:

αt =
1

2
log

1− εt
εt

d Update weights:

d(t+1)
n = d(t)n exp{−αtynht(xn)}/Zt

where Zt is a normalization constant, such that
∑N
n=1 d

(t+1)
n = 1.

4 Break if εt = 0 or εt ≥ 1
2 and set T = t− 1.

5 Output: fT (x) =
∑T
t=1

αt∑T
r=1 αr

ht(x)

After selecting the hypothesis ht in εt(ht, d
(t)) =

∑N
n=1 d

(t)
n I (yn 6= ht(xn)) its

weight αt is computed such that it minimizes a certain loss function (Step 3c). In

AdaBoost we minimizesGAB(α) =
∑N
n=1 exp{−yn(αht(xn)+ft−1(xn))}. where

ft−1 is the combined hypothesis of the previous iteration given by ft−1(xn) =∑t−1
r−1 αrhr(xn).

29

8.4 Evaluating and debugging learning algorithms

Once you have defined your problem and prepared your data you need to apply
machine learning algorithms to the data in order to solve your problem. You
can spend a lot of time choosing, running and tuning algorithms. You want to
make sure you are using your time effectively to get closer to your goal. We
will step through a process to rapidly test algorithms and discover whether or
not there is structure in your problem for the algorithms to learn and which
algorithms are effective.
Test Harness
You need to define a test harness. The test harness is the data you will train
and test an algorithm against and the performance measure you will use to
assess its performance. It is important to define your test harness well so that
you can focus on evaluating different algorithms and thinking deeply about the
problem. The goal of the test harness is to be able to quickly and consistently
test algorithms against a fair representation of the problem being solved. The
outcome of testing multiple algorithms against the harness will be an estima-
tion of how a variety of algorithms perform on the problem against a chosen
performance measure. You will know which algorithms might be worth tuning
on the problem and which should not be considered further. The results will
also give you an indication of how learnable the problem is. If a variety of dif-
ferent learning algorithms university perform poorly on the problem, it may be
an indication of a lack of structure available to algorithms to learn. This may
be because there actually is a lack of learnable structure in the selected data or
it may be an opportunity to try different transforms to expose the structure to
the learning algorithms.
Performance Measure
The performance measure is the way you want to evaluate a solution to the
problem. It is the measurement you will make of the predictions made by a
trained model on the test dataset. Performance measures are typically special-
ized to the class of problem you are working with, for example classification,
regression, and clustering. Many standard performance measures will give you
a score that is meaningful to your problem domain. For example, classification
accuracy for classification (total correct correction divided by the total predic-
tions made multiple by 100 to turn it into a percentage). You may also want a
more detailed breakdown of performance, for example, you may want to know
about the false positives on a spam classification problem because good email
will be marked as spam and cannot be read. There are many standard perfor-
mance measures to choose from. You rarely have to devise a new performance
measure yourself as you can generally find or adapt one that best captures the
requirements of the problem being solved. Look to similar problems you uncov-
ered and at the performance measures used to see if any can be adopted.
Test and Train Datasets
From the transformed data, you will need to select a test set and a training
set. An algorithm will be trained on the training dataset and will be evaluated
against the test set. This may be as simple as selecting a random split of data

30

(66% for training, 34% for testing) or may involve more complicated sampling
methods. A trained model is not exposed to the test dataset during training
and any predictions made on that dataset are designed to be indicative of the
performance of the model in general. As such you want to make sure the selec-
tion of your datasets are representative of the problem you are solving.
Cross Validation
A more sophisticated approach than using a test and train dataset is to use
the entire transformed dataset to train and test a given algorithm. A method
you could use in your test harness that does this is called cross validation. It
first involves separating the dataset into a number of equally sized groups of in-
stances (called folds). The model is then trained on all folds exception one that
was left out and the prepared model is tested on that left out fold. The process
is repeated so that each fold get’s an opportunity at being left out and acting
as the test dataset. Finally, the performance measures are averaged across all
folds to estimate the capability of the algorithm on the problem. For example,
a 3-fold cross validation would involve training and testing a model 3 times:
1: Train on folds 1+2, test on fold 3
2: Train on folds 1+3, test on fold 2
3: Train on folds 2+3, test on fold 1

The number of folds can vary based on the size of your dataset, but common
numbers are 3, 5, 7 and 10 folds. The goal is to have a good balance between
the size and representation of data in your train and test sets. When you’re
just getting started, stick with a simple split of train and test data (such as
66%/34%) and move onto cross validation once you have more confidence.
Testing Algorithms
When starting with a problem and having defined a test harness you are happy
with, it is time to spot check a variety of machine learning algorithms. Spot
checking is useful because it allows you to very quickly see if there is any learn-
able structures in the data and estimate which algorithms may be effective on
the problem. Spot checking also helps you work out any issues in your test har-
ness and make sure the chosen performance measure is appropriate. The best
first algorithm to spot check is a random. Plug in a random number generator
to generate predictions in the appropriate range. This should be the worst “al-
gorithm result” you achieve and will be the measure by which all improvements
can be assessed. Select 5-10 standard algorithms that are appropriate for your
problem and run them through your test harness. By standard algorithms, I
mean popular methods no special configurations. Appropriate for your prob-
lem means that the algorithms can handle regression if you have a regression
problem. Choose methods from the groupings of algorithms we have already
reviewed. I like to include a diverse mix and have 10-20 different algorithms
drawn from a diverse range of algorithm types. Depending on the library I am
using, I may spot check up to a 50+ popular methods to flush out promising
methods quickly. If you want to run a lot of methods, you may have to revisit
data preparation and reduce the size of your selected dataset. This may reduce
your confidence in the results, so test with various data set sizes. You may like

31

to use a smaller size dataset for algorithm spot checking and a fuller dataset for
algorithm tuning.

8.5 Classification errors

In this section, we develop a categorization for prediction errors considering
both training set and generalization errors. We also demonstrate that our cat-
egorization is exhaustive, that is, we provide a characterization of prediction
errors. Our categorization is relative to a particular training set T , feature set
F , and learning algorithm L. We describe four categories of errors: mislabelling
errors, representation errors, learner errors, and boundary errors. Generaliza-
tion errors are of a different nature than training set prediction errors due to the
fact that they are not in the training set. This difference is important because
the teacher can only see a generalization error when they provide a label for
an object not in the training set. We classify the types of generalization errors
relative to a particular training set T , feature set F , and learning algorithm L
by considering the result of adding a correctly labelled version of the object to
the training set.

� Mislabelling Errors
A mislabeling error is a labeled object such that the label does not agree
with the target classification function. At first glance it is not clear that
mislabelling errors have anything to do with a prediction error, however,
mislabelling errors can give rise to prediction errors.

� Learner Errors
A learner error is a prediction error that arises due to the fact that the
learner does not find a classification function that correctly predict the
training set when such a learnable classifier exists.

� Representation Errors
A representation error is a prediction error that arises due to the fact
that there is no learnable classification function that correctly predicts
the training set.

� Boundary Errors
Our final type of prediction error is a type of generalization error. A
boundary error is a prediction error for an object if adding to the training
set yields a classification function that correctly predicts the augmented
training set.

32

