
UNIT I

Ashok Kumar Yadav

Jan 2018

1 Concept of learning system

Machine learning is a subfield of computer science, but is often also referred
to as predictive analytics, or predictive modeling. Its goal and usage is to
build new and/or leverage existing algorithms to learn from data, in order to
build generalizable models that give accurate predictions, or to find patterns,
particularly with new and unseen similar data.
A computer program is said to learn from experience E with respect to some
class of task T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.
A checkers learning problem:

� Task T: playing checkers

� Performance measure P: percentage of games won against opponents

� Training experience E: playing practice games against itself.

A handwriting recognition learning problem:

� Task T: recognizing and classifying handwritten words within images

� Performance measure P:percent of words correctly classified

� Training experience E: a database of handwritten words with given clas-
sifications

A robot driving learning problem:

� Task T: driving on public four-lane highway using vision sensors

� Performance measure P: average distance travelled before an error

� Training experience E: a sequence of image and steering commands recorded
while observing a human driver.

1



2 Goals of Machine Learning

The primary goal of machine learning research is to develop general purpose
algorithms of practical value. Such algorithms should be efficient. As usual,
as computer scientists, we care about time and space efficiency. But in the
context of learning, we also care a great deal about another precious resource,
namely, the amount of data that is required by the learning algorithm. Learning
algorithms should also be as general purpose as possible. We are looking for
algorithms that can be easily applied to a broad class of learning problems, such
as those listed above.
Of primary importance, we want the result of learning to be a prediction rule
that is as accurate as possible in the predictions that it makes. Occasionally, we
may also be interested in the interpretability of the prediction rules produced
by learning. In other words, in some contexts (such as medical diagnosis), we
want the computer to find prediction rules that are easily understandable by
human experts.
Machine learning can be thought of as “programming by example.” What is the
advantage of machine learning over direct programming? First, the results of us-
ing machine learning are often more accurate than what can be created through
direct programming. The reason is that machine learning algorithms are data
driven, and are able to examine large amounts of data. On the other hand, a
human expert is likely to be guided by imprecise impressions or perhaps an ex-
amination of only a relatively small number of examples. Imagine a dataset as a
table, where the rows are each observation (aka measurement, data point, etc),
and the columns for each observation represent the features of that observation
and their values. At the outset of a machine learning project, a dataset is usually
split into two or three subsets. The minimum subsets are the training and test
datasets, and often an optional third validation dataset is created as well. Once
these data subsets are created from the primary dataset, a predictive model
or classifier is trained using the training data, and then the model’s predictive
accuracy is determined using the test data. As mentioned, machine learning
leverages algorithms to automatically model and find patterns in data, usually
with the goal of predicting some target output or response. These algorithms
are heavily based on statistics and mathematical optimization. Optimization
is the process of finding the smallest or largest value (minima or maxima) of a
function, often referred to as a loss, or cost function in the minimization case.
One of the most popular optimization algorithms used in machine learning is
called gradient descent, and another is known as the the normal equation. In a
nutshell, machine learning is all about automatically learning a highly accurate
predictive or classifier model, or finding unknown patterns in data, by leveraging
learning algorithms and optimization techniques.

3 Applications of Machine Learning

Machine learning algorithms are used primarily for the following types of output:

2



� Clustering (Unsupervised)

� Two-class and multi-class classification (Supervised)

� Regression: Univariate, Multivariate, etc. (Supervised)

� Anomaly detection (Unsupervised and Supervised)

� Recommendation systems (aka recommendation engine)

Specific algorithms that are used for each output type are discussed in the next
section, but first, let’s give a general overview of each of the above output, or
problem types. As discussed, clustering is an unsupervised technique for dis-
covering the composition and structure of a given set of data. It is a process of
clumping data into clusters to see what groupings emerge, if any. Each cluster
is characterized by a contained set of data points, and a cluster centroid. The
cluster centroid is basically the mean (average) of all of the data points that
the cluster contains, across all features. Classification problems involve placing
a data point (aka observation) into a pre-defined class or category. Sometimes
classification problems simply assign a class to an observation, and in other cases
the goal is to estimate the probabilities that an observation belongs to each of
the given classes. A great example of a two-class classification is assigning the
class of Spam or Ham to an incoming email, where ham just means ‘not spam’.
Multi-class classification just means more than two possible classes. So in the
spam example, perhaps a third class would be ‘Unknown’. Regression is just
a fancy word for saying that a model will assign a continuous value (response)
to a data observation, as opposed to a discrete class. A great example of this
would be predicting the closing price of the Dow Jones Industrial Average on
any given day. This value could be any number, and would therefore be a per-
fect candidate for regression. Note that sometimes the word regression is used
in the name of an algorithm that is actually used for classification problems, or
to predict a discrete categorical response (e.g., spam or ham). A good example
is logistic regression, which predicts probabilities of a given discrete value. An-
other problem type is anomaly detection. While we’d love to think that data is
well behaved and sensible, unfortunately this is often not the case. Sometimes
there are erroneous data points due to malfunctions or errors in measurement,
or sometimes due to fraud. Other times it could be that anomalous measure-
ments are indicative of a failing piece of hardware or electronics. Sometimes
anomalies are indicative of a real problem and are not easily explained, such as
a manufacturing defect, and in this case, detecting anomalies provides a mea-
sure of quality control, as well as insight into whether steps taken to reduce
defects have worked or not. In either case, there are times where it is beneficial
to find these anomalous values, and certain machine learning algorithms can
be used to do just that. The final type of problem is addressed with a rec-
ommendation system, or also called recommendation engine. Recommendation
systems are a type of information filtering system, and are intended to make
recommendations in many applications, including movies, music, books, restau-
rants, articles, products, and so on. The two most common approaches are

3



content-based and collaborative filtering. Two great examples of popular rec-
ommendation engines are those offered by Netflix and Amazon. Netflix makes
recommendations in order to keep viewers engaged and supplied with plenty of
content to watch. In other words, to keep people using Netflix. They do this
with their “Because you watched . . . “, “Top Picks for Alex”, and “Suggestions
for you” recommendations. Amazon does a similar thing in order to increase
sales through up-selling, maintain sales through user engagement, and so on.
They do this through their “Customers Who Bought This Item Also Bought”,
“Recommendations for You, Alex”, “Related to Items You Viewed”, and “More
Items to Consider”recommendations.

The value of machine learning technology has been recognized by companies
across several industries that deal with huge volumes of data. By leveraging
insights obtained from this data, companies are able work in an efficient manner
to control costs as well as get an edge over their competitors. This is how some
sectors / domains are implementing machine learning :-

� Financial Services: Companies in the financial sector are able to identify
key insights in financial data as well as prevent any occurrences of financial
fraud, with the help of machine learning technology. The technology is also
used to identify opportunities for investments and trade. Usage of cyber
surveillance helps in identifying those individuals or institutions which are
prone to financial risk, and take necessary actions in time to prevent fraud.

� Marketing and Sales: Companies are using machine learning technol-
ogy to analyze the purchase history of their customers and make person-
alized product recommendations for their next purchase. This ability to
capture, analyze, and use customer data to provide a personalized shop-
ping experience is the future of sales and marketing.

� Government: Government agencies like utilities and public safety have
a specific need FOR Ml, as they have multiple data sources, which can be
mined for identifying useful patterns and insights. For example sensor data
can be analyzed to identify ways to minimize costs and increase efficiency.
Furthermore, ML can also be used to minimize identity thefts and detect
fraud.

� Healthcare: With the advent of wearable sensors and devices that use
data to access health of a patient in real time, ML is becoming a fast-
growing trend in healthcare. Sensors in wearable provide real-time patient
information, such as overall health condition, heartbeat, blood pressure
and other vital parameters. Doctors and medical experts can use this in-
formation to analyze the health condition of an individual, draw a pattern
from the patient history, and predict the occurrence of any ailments in the
future. The technology also empowers medical experts to analyze data to
identify trends that facilitate better diagnoses and treatment.

� Transportation: Based on the travel history and pattern of traveling
across various routes, machine learning can help transportation compa-

4



nies predict potential problems that could arise on certain routes, and
accordingly advise their customers to opt for a different route. Trans-
portation firms and delivery organizations are increasingly using machine
learning technology to carry out data analysis and data modeling to make
informed decisions and help their customers make smart decisions when
they travel.

� Oil and Gas: This is perhaps the industry that needs the application
of machine learning the most. Right from analyzing underground min-
erals and finding new energy sources to streaming oil distribution, ML
applications for this industry are vast and are still expanding.

4 Aspects of Training Data

Data pre-processing is an integral step in Machine Learning as the quality of
data and the useful information that can be derived from it directly affects
the ability of our model to learn; therefore, it is extremely important that we
preprocess our data before feeding it into our model. The process for getting
data ready for a machine learning algorithm can be summarized in these steps:

1 Select Data

2 Pre-process Data

3 Transform Data

4.1 Select Data

Selecting the right dataset for Machine learning is very important to make the
AI model functional with right approach. Though selecting the right quality and
amount of data is challenging task but there are few rules needs to be followed
for machine learning on big data. There is always a strong desire for including
all data that is available, that the maxim “more is better” will hold. This may
or may not be true.
We need to consider what data we actually need to address the question or
problem we are working on. Make some assumptions about the data we require
and be careful to record those assumptions so that we can test them later if
needed.
Below are some questions to help we think through this process:

a What is the extent of the data we have available? For example, through
time, database tables, connected systems. Ensure we have a clear picture
of everything that we can use.

b What data is not available that we wish we had available? For example,
data that is not recorded or cannot be recorded. We may be able to derive
or simulate this data.

5



c What data don’t we need to address the problem? Excluding data is
almost always easier than including data. Note down which data we ex-
cluded and why.

It is only in small problems, like competition or toy datasets where the data has
already been selected for us. Unstructured data such as images, text or video
will eventually need to be converted into a data frame before applying predic-
tive methods, so these metrics listed below apply to all types of data during the
machine learning process.
n: Usually the first characteristic of interest in a dataset is its size, N measured
as the number of rows or examples.
d: the next descriptor of the data is its dimension, d measured by the number
of columns or attributes
k: this descriptor applies only to classification problems. k represents the num-
ber of classes. Today most classification problems are binary or k=2. But it is
not difficult to envision situations where k >> 2.
m: is the ratio of number of samples of the minority class to number of samples
of the majority class in a 2-class problem. In a multiclass problem (k > 2), this
could be the ratio of the number of samples of a given class to the rest of the
samples.

4.2 Pre-Process Data

The collected data cannot be used directly for performing analysis process.
Whenever the data is gathered from different sources, it is collected in raw for-
mat which is not feasible for the analysis. Therefore, certain steps are executed
to convert the data into a small clean data set. These are the common data
pre-processing methods:

1 Formatting: The data you have selected may not be in a format that is
suitable for you to work with. The data may be in a relational database
and you would like it in a flat file, or the data may be in a proprietary file
format and you would like it in a relational database or a text file.

2 Cleaning: Cleaning data is the removal or fixing of missing data. There
may be data instances that are incomplete and do not carry the data you
believe you need to address the problem. These instances may need to be
removed. Additionally, there may be sensitive information in some of the
attributes and these attributes may need to be anonymized or removed
from the data entirely.

3 Sampling: There may be far more selected data available than you need
to work with. More data can result in much longer running times for
algorithms and larger computational and memory requirements. You can
take a smaller representative sample of the selected data that may be much
faster for exploring and prototyping solutions before considering the whole
dataset.

6



4 Binarize Data (Make Binary): We can transform our data using a
binary threshold. All values above the threshold are marked 1 and all
equal to or below are marked as 0. This is called binarizing your data or
threshold your data. It can be useful when you have probabilities that
you want to make crisp values. It is also useful when feature engineering
and you want to add new features that indicate something meaningful.

5 Standardize Data: Standardization is a useful technique to transform
attributes with a Gaussian distribution and differing means and standard
deviations to a standard Gaussian distribution with a mean of 0 and a
standard deviation of 1.

6 Dimensionality Reduction: When data sets become large in the num-
ber of predictor variables or the number of instances, data mining algo-
rithms face the curse of dimensionality problem. It is a serious problem
as it will impede the operation of most data mining algorithms as the
computational cost rise. This section will underline the most influential
dimensionality reduction algorithms according to the division established
into Feature Selection (FS) and space transformation-based methods.

4.3 Transform Data

The final step is to transform the process data. This step is used to convert
the raw data into a specified format according to the need of the model. The
methods used for transformation of data are given below :–

1 Rescale Data: When our data is comprised of attributes with varying
scales, many machine learning algorithms can benefit from rescaling the
attributes to all have the same scale. This is useful for optimization al-
gorithms in used in the core of machine learning algorithms like gradient
descent. It is also useful for algorithms that weight inputs like regres-
sion and neural networks and algorithms that use distance measures like
K-Nearest Neighbours.

2 Decomposition: There may be features that represent a complex con-
cept that may be more useful to a machine learning method when split
into the constituent parts. An example is a date that may have day and
time components that in turn could be split out further. Perhaps only the
hour of day is relevant to the problem being solved. consider what feature
decompositions you can perform.

3 Aggregation: There may be features that can be aggregated into a single
feature that would be more meaningful to the problem you are trying to
solve. For example, there may be a data instances for each time a customer
logged into a system that could be aggregated into a count for the number
of logins allowing the additional instances to be discarded. Consider what
type of feature aggregations could perform.

7



Data preparation is a large subject that can involve a lot of iterations, explo-
ration and analysis. Getting good at data preparation will make you a master
at machine learning. For now, just consider the questions raised in this post
when preparing data and always be looking for clearer ways of representing the
problem you are trying to solve.

5 Concept Learning and Concept Representa-
tion

Conceptual learning is an educational method that centers on big-picture ideas
and learning how to organize and categorize information. Unlike more tradi-
tional learning models which concentrate on the ability to recall specific facts
(such as the dates of an event or the twenty possible causes of a particular ill-
ness), conceptual learning focuses on understanding broader principles or ideas
(what we call “concepts”) that can later be applied to a variety of specific ex-
amples.
To some, conceptual learning can be seen as more of a top-down approach versus
the bottom- up model used in more traditional learning (Fig. ??). To others
who view traditional learning as rote memorization of facts and figures, con-
ceptual learning is seen as a means for getting students to think more critically
about the new subjects and situations they encounter. The main goal of rep-
resentation learning or feature learning is to find an appropriate representation
of data in order to perform a machine learning task.
In particular, deep learning exploits this concept by its very nature. In a neural
network, each hidden layer maps its input data to an inner representation that
tends to capture a higher level of abstraction. These learnt features are increas-
ingly more informative through layers towards the machine learning task that
we intend to perform (e.g. classification).
Much of human learning involves acquiring general concepts from past experi-
ences. For example, humans identify different vehicles among all the vehicles
based on specific sets of features defined over a large set of features. This special
set of features differentiates the subset of cars in a set of vehicles. This set of
features that differentiate cars can be called a concept.
Similarly, machines can learn from concepts to identify whether an object be-
longs to a specific category by processing past/training data to find a hypothesis
that best fits the training examples.

5.1 Concepts and Exemplars

Concepts are mental categories for facts, objects, events, people, ideas — even
skills and competencies — that have a common set of features across multiple
situations and contexts. Concepts can range from simple to complex according
to how easily they can be defined.
Examples of concepts :-
Concrete Concepts have aspects or dimensions that are easily seen, heard, or

8



MACHINE LEARNING ASSIGNMENT 
 

TOPIC: Concept Learning & Function Approximation 

A. CONCEPT LEARNING : 
 

Conceptual learning is an educational method that centers on big-picture ideas and learning 
how to organize and categorize information. Unlike more traditional learning models which 
concentrate on the ability to recall specific facts (such as the dates of an event or the twenty 
possible causes of a particular illness), conceptual learning focuses on understanding broader 
principles or ideas (what we call “concepts”) that can later be applied to a variety of specific 
examples. 

 
To some, conceptual learning can be seen as more of a top-down approach versus the bottom- 
up model used in more traditional learning. To others who view traditional learning as rote 
memorization of facts and figures, conceptual learning is seen as a means for getting students 
to think more critically about the new subjects and situations they encounter. 

 

The main goal of representation learning or feature learning is to find an appropriate representation of 
data in order to perform a machine learning task. 

Fig. 1 Conceptual Learning and Traditional Learning

9



 

Fig. 2 Concept of Fruit

touched. Fruit would be an example of a concrete concept due to its tangible
characteristics of being seed-associated, fleshy, and plant-derived.
Semi-concrete Concepts have some combination of concrete and non-concrete
characteristics. Take the semi-concrete concept of a politician, for instance.
Some characteristics of a politician could be concrete, such as a holder or candi-
date for an elected office. However, other characteristics may not be as concrete,
such as one who serves the public.
Abstract Concepts do not have many (if any) absolute characteristics that
are easy to comprehend with the senses. Unlike concrete and semi-concrete
concepts, abstract concepts are not explained by a list of well-defined rules or
characteristics. More often, they are understood by mental images or beliefs
about its characteristics. Love would be a good example of an abstract concept,
as the characteristics of love might differ from one person to the next.
So if concepts are the broad principles or classifications, Exemplars then, are
the ”typical examples” or ”excellent models” of that principle. For example, if
you are teaching about the concept of fruit, then some good exemplars would
be apples, oranges, and bananas (Fig. ??). If love is the concept at hand,
depending on the type of course you are teaching, some exemplars to use could
be the relationship of a mother and daughter, or a group of friends.
Target Concept

The set of items/objects over which the concept is defined is called the set of
instances and denoted by X. The concept or function to be learned is called the
target concept and denoted by c. It can be seen as a Boolean valued function
defined over X and can be represented as c : X− > {0, 1}.
If we have a set of training examples with specific features of target concept
C, the problem faced by the learner is to estimate C that can be defined on
training data. H is used to denote the set of all possible hypotheses that the

10



learner may consider regarding the identity of the target concept. The goal of
a learner is to find a hypothesis H that can identify all the objects in X so that
h(x) = c(x) for all x in X.
An algorithm that supports concept learning requires:
1. Training data (past experiences to train our models)
2. Target concept (hypothesis to identify data objects)
3. Actual data objects (for testing the models)
Inductive Learning Hypothesis
As we discussed earlier, the ultimate goal of concept learning is to identify a
hypothesis H identical to target concept C over data set X with the only avail-
able information about C being its value over X. Our algorithm can guarantee
that it best fits the training data. In other words:
”Any hypothesis found approximate the target function well over a sufficiently
large set of training examples will also approximate the target function well over
other unobserved examples.”
For example, whether a person goes to a movie is based on four binary features
with two values (true or false):
1. Has money
2. Has free time
3. It’s a holiday
4. Has pending work
With the training data, we have with two data objects as positive samples and
one as negative:
1. x1 :< true, true, false, false >: +ve
2. x2 :< true, false, false, true >: +ve
3. x3 :< true, false, false, true >: −ve
Hypothesis Notations
Each of the data objects represents a concept and hypotheses. Considering a
hypothesis < true, true, false, false > is more specific because it can cover
only one sample. Generally, we can add some notations into this hypothesis.
We have the following notations:
1. Ø(represents a hypothesis that rejects all)
2. <?, ?, ?, ? > (accepts all) 3. < true, false, ?, ? > (accepts some) The hypoth-
esis Ø will reject all the data samples. The hypothesis <?, ?, ?, ? > will accept
all the data samples. The ? notation indicates that the values of this specific
feature do not affect the result.
The total number of the possible hypothesis is (3 ∗ 3 ∗ 3 ∗ 3) + 1|3 because one
feature can have either true, false, or ? and one hypothesis for rejects all (Ø).
General to Specific
Many machine learning algorithms rely on the concept of general-to-specific or-
dering of hypothesis.
1. h1 =< true, true, ?, ? >
2. h2 =< true, ?, ?, ? >
Any instance classified by h1 will also be classified by h2. We can say that h2 is
more general than h1. Using this concept, we can find a general hypothesis that
can be defined over the entire dataset X. To find a single hypothesis defined on

11



 

Fig. 3 Generalisation and Concept

X, we can use the concept of being more general than partial ordering. One
way to do this is start with the most specific hypothesis from H and generalize
this hypothesis each time it fails to classify and observe positive training data
object as positive.
1. The first step in the Find-S algorithm is to start with the most specific hy-
pothesis, which can be denoted by h < − < Ø,Ø,Ø,Ø >.
2. This step involves picking up next training sample and applying Step 3 on
the sample.
3. The next step involves observing the data sample. If the sample is negative,
the hypothesis remains unchanged and we pick the next training sample by pro-
cessing Step 2 again. Otherwise, we process Step 4.
4. If the sample is positive and we find that our initial hypothesis is too specific
because it does not cover the current training sample, then we need to update
our current hypothesis. This can be done by the pairwise conjunction (logical
and operation) of the current hypothesis and training sample.
If the next training sample is ¡true, true, false, false¿ and the current hypothesis
is < Ø,Ø,Ø,Ø >, then we can directly replace our existing hypothesis with the
new one.
If the next positive training sample is < true, true, false, true > and current
hypothesis is < true, true, false, false >, then we can perform a pairwise con-
junctive. With the current hypothesis and next training sample, we can find a
new hypothesis by putting ? in the place where the result of conjunction is false:
< true, true, false, true > Ø < true, true, false, false >=< true, true, false, ? >
Now, we can replace our existing hypothesis with the new one: h < − <
true, true, false, ? >
5. This step involves repetition of Step 2 until we have more training samples.
6. Once there are no training samples, the current hypothesis is the one we
wanted to find. We can use the final hypothesis to classify the real objects.
Example of working with conceptual learning:-

12



 

Fig. 4 Example of conceptual learning

Consider you are tasked to classify a set of shapes. The way you do that is to
find unique characteristics of each of your input shape. An example is number
of corners (or vertices). Circle has 0, Triangle has 3 and a square has 4 Fig.
??. Your system may work something like this:
Input - An image
Representation - No of corners in the image (you might use tools like openCV)
Model - Gets an input representation or feature (e.g. no of corners) and applies
rules to detect the shape. (Like if feature input is 0 then circle).
Output - We have a working system.
But what happens when you start getting inputs as cuboid, trapezium or all
sort of shapes. You would realize that designing features gets not just difficult,
time consuming and requires a deep domain expertise as you start working with
real world use-cases. E.g. consider you need to recognize equilateral versus
obtuse triangle (both have same no of corners). It is observed that designing
features is a complex process and the way to solve that is how our brain is able
to design these features. In this example, you looked at shapes and decided
that no of corners seems like a good way to uniquely classify images. It is this
task of brain that is performed by feature or representation learning algorithms.
Deep learning is just one of such methods. Deep Learning learns tries to learn
features on its own. All you would like to do is pass an image and let the system
learn features like we do.

6 Function Approximation

Statistical and connectionist approaches to machine learning are related to func-
tion approximation methods in mathematics. For the purposes of illustration
let us assume that the learning task is one of classification. That is, we wish to
find ways of grouping objects in a universe. In Fig. ?? we have a universe of
objects that belong to either of two classes ‘+’ or ‘-’. By function approxima-
tion, we describe a surface that separates the objects into different regions. The
simplest function is that of a line and linear regression methods and perceptrons
are used to find linear discriminant functions. A perceptron is a simple pattern
classifier. Given a binary input vector, x, a weight vector, w, and a threshold

13



 

Fig. 5 A linear discrimination between two classes

value, T, if, ∑
i

wi × xi > T

Then, the output is 1, indicating membership of a class, otherwise it is 0, indi-
cating exclusion from the class. Clearly, w.x−T describes a hyper plane and the
goal of perceptron learning is to find a weight vector, w, that results in correct
classification for all training examples. The perceptron learning algorithm is
quite straight forward. All the elements of the weight vector are initially set to
0. For each training example, if the perceptron outputs 0 when it should output
1 then add the input vector to the weight vector; if the perceptron outputs 1
when it should output 0 then subtract the input vector to the weight vector;
otherwise, do nothing. This is repeated until the perceptron yields the correct
result for each training example. The algorithm has the effect of reducing the
error between the actual and desired output.
The perceptron is an example of a linear threshold unit (LTU). A single LTU
can only recognize one kind of pattern, provided that the input space is linearly
separable. If we wish to recognize more than one pattern, several LTU’s can be
combined. In this case, instead of having a vector of weights, we have an array.
The output will now be a vector:

u = Wx

Where, each element of u indicates membership of a class and each row in W is
the set of weights for one LTU. This architecture is called a pattern associators.
LTU’s can only produce linear discriminant functions and consequently, they are
limited in the kinds of classes that can be learned. However, it was found that
by cascading pattern associators, it is possible to approximate decision surfaces
that are of a higher order than simple hyper planes. In cascaded system, the
outputs of one pattern associators are fed into the inputs of another, thus:

u = W (V x)

To facilitate learning, a further modification must be made. Rather than
using a simple threshold, as in the perceptron, multi-layer networks Fig. ??

14



 

Fig. 6 A multi-layer network

usually use a non-linear threshold such a sigmoid function, such as

1

1 + e−x

Like perceptron learning, back-propagation attempts to reduce the errors be-
tween the output of the network and the desired result. However, assigning
blame for errors to hidden units (ie. nodes in the intermediate layers), is not so
straightforward. The error of the output units must be propagated back through
the hidden units. The contribution that a hidden unit makes to an output unit
is related strength of the weight on the link between the two units and the level
of activation of the hidden unit when the output unit was given the wrong level
of activation. This can be used to estimate the error value for a hidden unit in
the penultimate layer, and that can, in turn, be used in make error estimates for
earlier layers. Despite the non-linear threshold, multi-layer networks can still be
thought of as describing a complex collection of hyper planes that approximate
the required decision surface.
Version Space
A version space is a hierarchical representation of knowledge that enables you
to keep track of all the useful information supplied by a sequence of learning
examples without remembering any of the examples. The version space method
is a concept learning process accomplished by managing multiple models within
a version space.
Version Space Characteristics
Tentative heuristics are represented using version spaces. A version space rep-
resents all the alternative plausible descriptions of a heuristic. A plausible de-
scription is one that is applicable to all known positive examples and no known
negative example. A version space description consists of two complementary
trees:
1. One that contains nodes connected to overly general models, and
2. One that contains nodes connected to overly specific models.
Node values/attributes are discrete.
Fundamental Assumptions
1. The data is correct; there are no erroneous instances.
2. A correct description is a conjunction of some of the attributes with values.
Diagrammatical Guidelines

15



There is a generalization tree and a specialization tree. Each node is connected
to a model. Nodes in the generalization tree are connected to a model that
matches everything in its subtree. Nodes in the specialization tree are con-
nected to a model that matches only one thing in its subtree. Links between
nodes and their models denote:
- generalization relations in a generalization tree, and
- specialization relations in a specialization tree.

7 Types of Learning

7.1 Supervised Learning

Supervised learning is the machine learning task of learning a function that maps
an input to an output based on example input-output pairs. It infers a function
from labeled training data consisting of a set of training examples. In supervised
learning, each example is a pair consisting of an input object (typically a vec-
tor) and a desired output value (also called the supervisory signal). Supervised
learning, in the context of artificial intelligence (AI) and machine learning, is
a type of system in which both input and desired output data are provided.
Input and output data are labelled for classification to provide a learning ba-
sis for future data processing. Supervised machine learning systems provide
the learning algorithms with known quantities to support future judgements,
Chatbots, self-driving cars, facial recognition programs, systems and robots are
among the systems that may use either supervised or unsupervised learning.
Supervised learning systems are mostly associated with retrieval-based AI, but
they may also be capable of using a generative learning model. In supervised
learning for image processing, for example, an AI system might be provided
with labelled pictures of vehicles in categories such as cars and trucks. After
an enough observation, the system should be able to distinguish between and
categorize unlabelled images, at which time training can be said to be com-
plete. Supervised learning models have some advantages over the unsupervised
approach, but they also have limitations. The systems are more likely to make
judgements that humans can relate to, for example, because humans have pro-
vided the basis for decisions. However, in the case of a retrieval-based method,
supervised learning systems have trouble dealing with new information. If a sys-
tem with categories for cars and trucks is presented with a bicycle, for example,
it would have to be incorrectly lumped in one category or the other. If the AI
system was generative, however, it may not know what the bicycle is but would
be able to recognize it as belonging to a separate category. Supervised learn-
ing is the Data mining task of inferring a function from labelled training data.
The training data consist of a set of training example. In supervised learning,
each example is a pair consisting of an input object (typically a vector) and a
desired output value (also called the supervisory signal). A supervised learning
algorithm analyses the training data and produces an inferred function, which
can be used for mapping new examples. An optimal scenario will allow for the

16



algorithm to correctly determine the class labels for unseen instance . This
requires the learning algorithm to generalize from the training data to unseen
situations in a “reasonable” way. There are some of the points:-

� You already learn from your previous work about the physical characters
of fruits.

� So, arranging the same type of fruits at one place is easy now.

� Your previous work is called as training data in data mining.

� so, you already learn the things from your train data, this is because of
response variable.

� Response variable mean just a decision variable.

� You can observe response variable below (FRUIT NAME) .

� Suppose you have taken a new fruit from the basket then you will see the
size , colour and shape of that fruit.

� If size is Big , colour is Red , shape is rounded shape with a depression
at the top, you will conform the fruit name as apple, and you will put in
apple group.

� Likewise, for other fruits also.

� Job of groping fruits was done and happy ending.

� You can observe in the table that a column was labelled as “FRUIT
NAME” this is called as response variable.

� If you learn the thing before from training data and then applying that
knowledge to the test data(for new fruit), This type of learning is called
as Supervised Learning.

� Classification comes under Supervised learning.

7.1.1 Supervised Learning Algorithms

� Support Vector Machines

� Linear regression

� Logistic regression

� Naive Bayes

� Linear discriminant analysis

� Decision trees

� K-Nearest neighbor algorithm

� Neural Networks (Multilayer perceptron)

� Similarity learning

17



7.1.2 Steps taken to implement supervised algorithm

In order to solve a given problem of supervised learning, one has to perform the
following steps:

� Determine the type of training examples. Before doing anything else, the
user should decide what kind of data is to be used as a training set. In case
of Handwriting Analysis, for example, this might be a single handwritten
character, an entire handwritten word, or an entire line of handwriting.

� Gather a training set. The training set needs to be representative of the
real-world use of the function. Thus, a set of input objects is gathered
and corresponding outputs are also gathered, either from human experts
or from measurements.

� Determine the input feature representation of the learned function. The
accuracy of the learned function depends strongly on how the input object
is represented. Typically, the input object is transformed into a feature
vector, which contains a number of features that are descriptive of the ob-
ject. The number of features should not be too large, because of the curse
of dimensionality; but should contain enough information to accurately
predict the output.

� Determine the structure of the learned function and corresponding learn-
ing algorithm. For example, the engineer may choose to use support vector
machines or decision trees.

� Complete the design. Run the learning algorithm on the gathered train-
ing set. Some supervised learning algorithms require the user to determine
certain control parameters. These parameters may be adjusted by opti-
mizing performance on a subset (called a validation set) of the training
set, or via cross-validation.

� Evaluate the accuracy of the learned function. After parameter adjust-
ment and learning, the performance of the resulting function should be
measured on a test set that is separate from the training set

7.1.3 Major issues in supervised learning

Bias-variance tradeoff
A first issue is the tradeoff between bias and variance. Imagine that we have
available several different, but equally good, training data sets. A learning al-
gorithm is biased for a particular input . The prediction error of a learned
classifier is related to the sum of the bias and the variance of the learning algo-
rithm. But if the learning algorithm is too flexible, it will fit each training data
set differently, and hence have high variance.
Function complexity and amount of training data
The second issue is the amount of training data available relative to the com-
plexity of the ”true” function (classifier or regression function). If the true

18



function is simple, then an ”inflexible” learning algorithm with high bias and
low variance will be able to learn it from a small amount of data. But if the
true function is highly complex (e.g., because it involves complex interactions
among many different input features and behaves differently in different parts
of the input space), then the function will only be learn able from a very large
amount of training data and using a ”flexible” learning algorithm with low bias
and high variance.
Dimensionality of the input space
A third issue is the dimensionality of the input space. If the input feature vec-
tors have very high dimension, the learning problem can be difficult even if the
true function only depends on a small number of those features. This is because
the many ”extra” dimensions can confuse the learning algorithm and cause it
to have high variance. Hence, high input dimensional typically requires tuning
the classifier to have low variance and high bias This is an instance of the more
general strategy of dimensionality reduction, which seeks to map the input data
into a lower-dimensional space prior to running the supervised learning algo-
rithm.
Noise in the output values
A fourth issue is the degree of noise in the desired output values (the supervisory
target variables). If the desired output values are often incorrect (because of hu-
man error or sensor errors), then the learning algorithm should not attempt to
find a function that exactly matches the training examples.In such a situation,
the part of the target function that cannot be modeled ”corrupts” your training
data - this phenomenon has been called deterministic noise. When either type
of noise is present, it is better to go with a higher bias, lower variance estimator.

7.2 Unsupervised Learning

Unsupervised Learning is a class of Machine Learning techniques to find the
patterns in data. The data given to unsupervised algorithm are not labeled,
which means only the input variables(X) are given with no corresponding output
variables. In unsupervised learning, the algorithms are left to themselves to
discover interesting structures in the data. Yan Lecun, director of AI research,
explains that unsupervised learning-teaching machines to learn for themselves
without having to be explicitly told if everything they do is right or wrong-
is the key to “true” AI. The image to the left in Fig. ?? is an example of
supervised learning; we use regression techniques to find the best fit line between
the features. While in unsupervised learning the inputs are segregated based on
features and the prediction is based on which cluster it belonged. Unsupervised
Learning mainly divided into two categories:- Clustering and Classification.

7.2.1 Clustering

The cluster analysis as a branch of machine learning that groups the data that
has not been labelled, classified or categorized. Instead of responding to feed-
back, cluster analysis identifies commonalities in the data and reacts based on

19



 

Fig. 7 Supervised and Unsupervised Learning

the presence or absence of such commonalities in each new piece of data.
Common clustering algorithms:
k-Means clustering: partitions data into k distinct clusters based on distance
to the centroid of a cluster
Gaussian mixture models: models clusters as a mixture of multivariate nor-
mal density components
Self-organizing maps: uses neural network that learn the topology and dis-
tribution of the data
Hidden Markov models: uses observed data to recover the sequence of states.

7.2.2 Classification

Classification is the process of predicting the class of given data points. Classes
are sometimes called as targets/ labels or categories. Classification predictive
modeling is the task of approximating a mapping function (f) from input vari-
ables (X) to discrete output variables (y). For example, spam detection in email
service providers can be identified as a classification problem. This is s binary
classification since there are only 2 classes as spam and not spam. A classifier
utilizes some training data to understand how given input variables relate to
the class. In this case, known spam and non-spam emails have to be used as
the training data. When the classifier is trained accurately, it can be used to
detect an unknown email. Classification belongs to the category of supervised
learning where the targets also provided with the input data. There are many
applications in classification in many domains such as in credit approval, medi-
cal diagnosis, target marketing etc.

20



Classification algorithms:
Decision Tree
Decision tree builds classification or regression models in the form of a tree
structure. It utilizes an if-then rule set which is mutually exclusive and exhaus-
tive for classification. The rules are learned sequentially using the training data
one at a time. Each time a rule is learned, the tuples covered by the rules are re-
moved. This process is continued on the training set until meeting a termination
condition. The tree is constructed in a top-down recursive divide-and-conquer
manner. All the attributes should be categorical. Otherwise, they should be
discretized in advance. Attributes in the top of the tree have more impact to-
wards in the classification and they are identified using the information gain
concept. A decision tree can be easily over-fitted generating too many branches
and may reflect anomalies due to noise or outliers. An over-fitted model has a
very poor performance on the unseen data even though it gives an impressive
performance on training data. This can be avoided by pre-pruning which halts
tree construction early or post-pruning which removes branches from the fully
grown tree.
Naive Bayes
Naive Bayes is a probabilistic classifier inspired by the Bayes theorem under a
simple assumption which is the attributes are conditionally independent. The
classification is conducted by deriving the maximum posterior which is the max-
imal with the above assumption applying to Bayes theorem. This assumption
greatly reduces the computational cost by only counting the class distribution.
Even though the assumption is not valid in most cases since the attributes are
dependent, surprisingly Naive Bayes has able to perform impressively. Naive
Bayes is a very simple algorithm to implement and good results have obtained
in most cases. It can be easily scalable to larger datasets since it takes linear
time, rather than by expensive iterative approximation as used for many other
types of classifiers.
Artificial Neural Networks
Artificial Neural Network is a set of connected input/output units where each
connection has a weight associated with it started by psychologists and neu-
robiologists to develop and test computational analogs of neurons. During the
learning phase, the network learns by adjusting the weights so as to be able to
predict the correct class label of the input tuples. There are many network ar-
chitectures available now like Feed-forward, Convolutional, Recurrent etc. The
appropriate architecture depends on the application of the model. For most
cases feed-forward models give reasonably accurate results and especially for
image processing applications, convolutional networks perform better.
k-Nearest Neighbor (KNN)
k-Nearest Neighbor is a lazy learning algorithm which stores all instances cor-
respond to training data points in n-dimensional space. When an unknown
discrete data is received, it analyzes the closest k number of instances saved
(nearest neighbors)and returns the most common class as the prediction and
for real-valued data it returns the mean of k nearest neighbors. In the distance-
weighted nearest neighbor algorithm, it weights the contribution of each of the

21



k neighbors according to their distance using the following query giving greater
weight to the closest neighbors.

7.2.3 Challenges in Implementing Unsupervised Learning

a) In addition to the regular issues of finding the right algorithms and hardware,
unsupervised learning presents a unique challenge: it’s difficult to figure out if
you’re getting the job done or not.
b) In supervised learning, we define metrics that drive decision making around
model tuning. Measures like precision and recall give a sense of how accurate
your model is, and parameters of that model are tweaked to increase those ac-
curacy scores. Low accuracy scores mean you need to improve, and so on.
c) Since there are no labels in unsupervised learning, it’s near impossible to get
a reasonably objective measure of how accurate your algorithm is. In clustering
for example, how can you know if K-Means found the right clusters? Are you
using the right number of clusters in the first place? In supervised learning we
can look to an accuracy score; here you need to get a bit more creative.
d) A big part of the “will unsupervised learning work for me?” question is
totally dependent on your business context. In our example of customer seg-
mentation, clustering will only work well if your customers actually do fit into
natural groups. One of the best (but most risky) ways to test your unsuper-
vised learning model is by implementing it in the real world and seeing what
happens! Designing an A/B test–with and without the clusters your algorithm
outputted–can be an effective way to see if it’s useful information or totally
incorrect.
e) Researchers have also been working on algorithms that might give a more ob-
jective measure of performance in unsupervised learning. Check out the below
section for some examples.

8 Training Dataset

The actual dataset that we use to train the model (weights and biases in the
case of Neural Network). The model sees and learns from this data. Machine
learning is a subfield of computer science that gives the computer the ability
to learn without being explicitly programmed. For this to happen, a machine
needs to be ”trained” by explicitly feeding it data that has the correct answers
attached. This training data will help the machine to connect the patterns in the
data to the right answer. Once trained in this way, a machine can now be given
test data that has no answers. The machine will then predict the answers based
on the training it received. Most data scientists divide their data (with answers,
that is historical data) into three portions: training data, cross-validation data
and testing data. The training data is used to make sure the machine recognizes
patterns in the data, the cross-validation data is used to ensure better accuracy
and efficiency of the algorithm used to train the machine, and the test data is
used to see how well the machine can predict new answers based on its training.

22



8.1 How to create training data?

Machine Learning models are trained using data with specific features. The
way in which the data is structured helps the models to learn and develop
relationship between these features. A well-processed training set is required to
build a robust model which in turn generates accurate results. In this article we
shall look at some of the ways in which one can build a structured dataset for
training. To build a robust model, one has to keep in mind the flow of operations
involved in building a quality dataset. The data should be accurate with respect
to the problem statement. For example, while trying to determine the height
of a person, feature such as age, sex, weight, or the size of the clothes, among
others, are to be considered. Here, the person’s clothes will account for his/her
height, whereas the colour of the clothes and the material will not add any value
in this case. Hence these features have very low weightage for predicting the
height of a person. A golden rule of machine learning is: Larger the data better
the results. There are several steps included in this process:

1 Data Selection In this step, one should be concerned about opting the
right number of features for the particular dataset. The data should be
consistent and should have least number of missing values. If a feature has
more than 25 to 30 percent missing values then it is usually considered
not fit to be a part of the training set. But there are instances where the
relationship between this feature and the Y feature is high. In that case,
one has to impute and handle the missing values for better results. For
example, let us say an institution has borrowed a loan from a bank. A
feature containing the GDP value of the particular country is available
with 30 percent missing values. If one infers that the particular feature
has a very high importance to predict whether the institution is able to
repay the loan or not, then this feature has to be considered. If the feature
does not hold high importance for developing the AI model, one should
exclude the data. At the end of this particular step, one should have an
idea about how to deal with the preprocessing data.

2 Data Preprocessing Once the right data is selected, preprocessing in-
cludes selection of the right data from the complete dataset and building
a training set. Here, some of the common steps are:
Organise and Format: The data might be scattered in different files,
for example, classroom datasets of various grades in a school which needs
to be clubbed together to form a dataset. One has to find the relation
between these datasets and preprocess to form a dataset of required di-
mensions. Also if the datasets are in different language they have to be
transformed into a universal language before proceeding.
Data Cleaning: This is one of the major steps in data preprocessing.
Cleaning refers to mainly dealing with the missing values and removal of
unwanted characters from the data. For example, if a feature consists of
age of a person, with 4 percent missing values, it can either deleted or

23



replaced. Here, is an in-depth article of how to handle missing in machine
learning.
Feature Extraction: This step involves analysis and optimisation of the
number of features. One has to find out which features are important for
prediction and select them for faster computations and low memory con-
sumption. For example, while dealing with an image classification prob-
lem, images with noise (irrelevant images with respect to the dataset)
should be removed.

3 Data Conversion
Scaling: This is necessary when the dataset is placed. Considering a lin-
ear dataset - bank data. If the feature containing the transaction amount
is important, then the data has to be scaled in order to build a robust
model. By default in correlation matrix, the Pearson method is used to
find the relationship. This might lead to a misunderstanding of the data
if it is not scaled by a definite value.
Disintegration and Composition: This step is considered when one
needs to split a particular feature to build a better training data for the
model to understand. One of the best examples of the data disintegration
is splitting up the time-series feature. Where one can extract the days,
months, year, hour, minutes, seconds, etc. from a particular sample. And
also let us say, the Project ID is IND0002. Here the first three characters
refer to the country code and 0002 refer to a categorical value. Separating
and processing may result in better accuracy.
Composition: This process involves combining different features to a sin-
gle feature for more meaningful data. For example, in the Titanic dataset,
the prefix of the passengers with Dr, Mr, Miss. etc can be clubbed into
a particular age groups of categorical data which adds more weight in
predicting the passengers’ survival.

one can understand how processed training set helps a machine learning to
develop the relationship between the features. This process involves a lot of
time, analysis and examination of the data. With a well - structured data,
machine learning model can train faster and give robust results.

9 Test Dataset

The sample of data used to provide an unbiased evaluation of a final model fit
on the training dataset. The Test dataset provides the gold standard used to
evaluate the model. It is only used once a model is completely trained (using
the train and validation sets). The test set is generally what is used to evaluate
competing models (For example on many Kaggle competitions, the validation
set is released initially along with the training set and the actual test set is only
released when the competition is about to close, and it is the result of the the
model on the Test set that decides the winner). Many a times the validation set

24



is used as the test set, but it is not good practice. The test set is generally well
curated. It contains carefully sampled data that spans the various classes that
the model would face, when used in the real world. This corresponds to the
final evaluation that the model goes through after the training phase (utilizing
training and validation sets) has been completed. This step is critical to test the
generalizability of the model (Step 3). By using this set, we can get the working
accuracy of our model. It is worth mentioning that we need to be subjective
and honest by not exposing the model to the test set until the training phase
is over. This way, we can consider the final accuracy measure to be reliable.
Training a model involves looking at training examples and learning from how
off the model is by frequently evaluating it on the validation set. However, the
last and most valuable pointer on the accuracy of a model is a result of running
the model on the testing set when the training is complete.

10 Validation Dataset

Validation Dataset: The sample of data used to provide an unbiased evaluation
of a model fit on the training dataset while tuning model hyperparameters. The
evaluation becomes more biased as skill on the validation dataset is incorporated
into the model configuration. The validation set is used to evaluate a given
model, but this is for frequent evaluation. We as machine learning engineers use
this data to fine-tune the model hyperparameters. Hence the model occasionally
sees this data, but never does it “Learn” from this. We use the validation set
results and update higher level hyperparameters. So the validation set in a way
affects a model, but indirectly.

11 Dataset split ratio

Now that you know what these datasets do, you might be looking for recommen-
dations on how to split your dataset into Train, Validation and Test sets. This
mainly depends on 2 things. First, the total number of samples in your data and
second, on the actual model you are training. Some models need substantial
data to train upon, so in this case you would optimize for the larger training
sets. Models with very few hyperparameters will be easy to validate and tune,
so you can probably reduce the size of your validation set, but if your model
has many hyperparameters, you would want to have a large validation set as
well(although you should also consider cross validation). Also, if you happen
to have a model with no hyperparameters or ones that cannot be easily tuned,
you probably don’t need a validation set too! All in all, like many other things
in machine learning, the train-test-validation split ratio is also quite specific to
your use case and it gets easier to make judgement as you train and build more
and more models. Many a times, people first split their dataset into two - Train
and Test. After this, they keep aside the Test set, and randomly choose X% of
their Train dataset to be the actual Train set and the remaining (100−X)% to

25



 

Fig. 8 Overfitting

be the Validation set, where X is a fixed number(say 80%), the model is then
iteratively trained and validated on these different sets. There are multiple ways
to do this, and is commonly known as Cross Validation. Basically you use your
training set to generate multiple splits of the Train and Validation sets. Cross
validation avoids over fitting and is getting more and more popular, with K-fold
Cross Validation being the most popular method of cross validation.

12 Over fitting

Overfitting refers to a model that models the training data too well. Overfitting
happens when a model learns the detail and noise in the training data to the
extent that it negatively impacts the performance of the model on new data
Fig. ??. This means that the noise or random fluctuations in the training data
is picked up and learned as concepts by the model. The problem is that these
concepts do not apply to new data and negatively impact the models ability to
generalize. Overfitting is more likely with nonparametric and nonlinear models
that have more flexibility when learning a target function. As such, many non-
parametric machine learning algorithms also include parameters or techniques
to limit and constrain how much detail the model learns. For example, decision
trees are a nonparametric machine learning algorithm that is very flexible and is
subject to overfitting training data. This problem can be addressed by pruning
a tree after it has learned in order to remove some of the detail it has picked
up. The cause of poor performance in machine learning is either overfitting or
underfitting the data. Supervised machine learning is best understood as ap-
proximating a target function (f) that maps input variables (X) to an output
variable (Y). Y = f(X) This characterization describes the range of classifica-

26



tion and prediction problems and the machine algorithms that can be used to
address them. An important consideration in learning the target function from
the training data is how well the model generalizes to new data. Generalization
is important because the data we collect is only a sample, it is incomplete and
noisy.

12.1 Generalization

In machine learning we describe the learning of the target function from training
data as inductive learning. Induction refers to learning general concepts from
specific examples which is exactly the problem that supervised machine learning
problems aim to solve. This is different from deduction that is the other way
around and seeks to learn specific concepts from general rules. Generalization
refers to how well the concepts learned by a machine learning model apply to
specific examples not seen by the model when it was learning. The goal of a good
machine learning model is to generalize well from the training data to any data
from the problem domain. This allows us to make predictions in the future on
data the model has never seen. There is a terminology used in machine learning
when we talk about how well a machine learning model learns and generalizes
to new data, namely overfitting and underfitting. Overfitting and underfitting
are the two biggest causes for poor performance of machine learning algorithms.

12.2 Statistical Fit

In statistics, a fit refers to how well you approximate a target function. This is
good terminology to use in machine learning, because supervised machine learn-
ing algorithms seek to approximate the unknown underlying mapping function
for the output variables given the input variables. Statistics often describe the
goodness of fit which refers to measures used to estimate how well the approx-
imation of the function matches the target function. Some of these methods
are useful in machine learning (e.g. calculating the residual errors), but some
of these techniques assume we know the form of the target function we are ap-
proximating, which is not the case in machine learning. If we knew the form of
the target function, we would use it directly to make predictions, rather than
trying to learn an approximation from samples of noisy training data. Over-
fitting refers to a model that models the training data too well. Overfitting
happens when a model learns the detail and noise in the training data to the
extent that it negatively impacts the performance of the model on new data.
This means that the noise or random fluctuations in the training data is picked
up and learned as concepts by the model. The problem is that these concepts do
not apply to new data and negatively impact the models ability to generalize.
Overfitting is more likely with nonparametric and nonlinear models that have
more flexibility when learning a target function. As such, many nonparametric
machine learning algorithms also include parameters or techniques to limit and
constrain how much detail the model learns. For example, decision trees are a
nonparametric machine learning algorithm that is very flexible and is subject

27



to overfitting training data. This problem can be addressed by pruning a tree
after it has learned in order to remove some of the detail it has picked up.

12.3 A Good Fit in Machine Learning

Ideally, we want to select a model at the sweet spot between underfitting and
overfitting. This is the goal, but is very difficult to do in practice. To understand
this goal, we can look at the performance of a machine learning algorithm over
time as it is learning a training data. We can plot both the skill on the training
data and the skill on a test dataset we have held back from the training process.
Over time, as the algorithm learns, the error for the model on the training data
goes down and so does the error on the test dataset. If we train for too long,
the performance on the training dataset may continue to decrease because the
model is overfitting and learning the irrelevant detail and noise in the training
dataset. At the same time the error for the test set starts to rise again as the
model’s ability to generalize decreases. The sweet spot is the point just before
the error on the test dataset starts to increase where the model has good skill
on both the training dataset and the unseen test dataset. We can perform
this experiment with your favorite machine learning algorithms. This is often
not useful technique in practice, because by choosing the stopping point for
training using the skill on the test dataset it means that the testset is no longer
“unseen” or a standalone objective measure. Some knowledge (a lot of useful
knowledge) about that data has leaked into the training procedure. There are
two additional techniques you can use to help find the sweet spot in practice:
resampling methods and a validation dataset.

12.4 Detection of Overfitting

A key challenge with overfitting, and with machine learning in general, is that
we can’t know how well our model will perform on new data until we actually
test it. To address this, we can split our initial dataset into separate training
and test subsets. This method can approximate of how well our model will
perform on new data. If our model does much better on the training set than
on the test set, then we’re likely overfitting.

12.5 Prevention of Overfitting

Detecting overfitting is useful, but it doesn’t solve the problem. Fortunately,
you have several options to try. Popular solutions for overfitting:
Cross-validation
Cross-validation is a powerful preventative measure against overfitting. The
idea is clever: Use your initial training data to generate multiple mini train-test
splits. Use these splits to tune your model. Cross-validation allows you to tune
hyperparameters with only your original training set. This allows you to keep
your test set as a truly unseen dataset for selecting your final model.
Train with more data

28



It won’t work every time, but training with more data can help algorithms de-
tect the signal better. In the earlier example of modeling height vs. age in
children, it’s clear how sampling more schools will help your model. Of course,
that’s not always the case. If we just add more noisy data, this technique won’t
help. That’s why you should always ensure your data is clean and relevant.
Remove features
Some algorithms have built-in feature selection. For those that don’t, you can
manually improve their generalizability by removing irrelevant input features.
An interesting way to do so is to tell a story about how each feature fits into the
model. This is like the data scientist’s spin on software engineer’s rubber duck
debugging technique, where they debug their code by explaining it, line-by-line,
to a rubber duck. If anything doesn’t make sense, or if it’s hard to justify cer-
tain features, this is a good way to identify them. In addition, there are several
feature selection heuristics you can use for a good starting point.
Early stopping
When you’re training a learning algorithm iteratively, you can measure how well
each iteration of the model performs. Up until a certain number of iterations,
new iterations improve the model. After that point, however, the model’s ability
to generalize can weaken as it begins to overfit the training data. Early stop-
ping refers stopping the training process before the learner passes that point.
Today, this technique is mostly used in deep learning while other techniques
(e.g. regularization) are preferred for classical machine learning.

13 Classification families

In machine learning and statistics, classification is a supervised learning ap-
proach in which the computer program learns from the data input given to it
and then uses this learning to classify new observation. This data set may sim-
ply be bi-class (like identifying whether the person is male or female or that
the mail is spam or non-spam) or it may be multi-class too. Some examples
of classification problems are: speech recognition, handwriting recognition, bio-
metric identification, document classification etc. Here we have the types of
classification algorithms in Machine Learning:

1 Linear Classifiers: Logistic Regression, Naive Bayes Classifier

2 Support Vector Machines

3 Decision Trees

4 Boosted Trees

5 Random Forest

6 Neural Networks

7 Nearest Neighbor

29



13.1 Linear discriminative

Linear Discriminant Analysis (LDA) is a classification method originally devel-
oped in 1936 by R. A. Fisher. Linear Discriminant Analysis is a dimensionality
reduction technique used as a preprocessing step in Machine Learning and pat-
tern classification applications.

13.2 Non-linear discriminative

13.3 Decision trees

Decision tree builds classification or regression models in the form of a tree
structure. It breaks down a data set into smaller and smaller subsets while at
the same time an associated decision tree is incrementally developed. The final
result is a tree with decision nodes and leaf nodes. A decision node has two
or more branches and a leaf node represents a classification or decision. The
topmost decision node in a tree which corresponds to the best predictor called
root node. Decision trees can handle both categorical and numerical data. De-
cision Tree Analysis is a general, predictive modelling tool that has applications
spanning a number of different areas. In general, decision trees are constructed
via an algorithmic approach that identifies ways to split a data set based on
different conditions. It is one of the most widely used and practical methods for
supervised learning. Decision Trees are a non-parametric supervised learning
method used for both classification and regression tasks. The goal is to create
a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features. The decision rules are generally in form
of if-then-else statements. The deeper the tree, the more complex the rules and
fitter the model.

� Instances: Refer to the vector of features or attributes that define the
input space

� Attribute: A quantity describing an instance

� Concept: The function that maps input to output

� Target Concept: The function that we are trying to find, i.e., the actual
answer

� Hypothesis Class: Set of all the possible functions

� Sample: A set of inputs paired with a label, which is the correct output
(also known as the Training Set)

� Candidate Concept: A concept which we think is the target concept

� Testing Set: Similar to the training set and is used to test the candidate
concept and determine its performance

30



A decision tree is a tree-like graph with nodes representing the place where
we pick an attribute and ask a question; edges represent the answers to the
question, and the leaves represent the actual output or class label. They are
used in non-linear decision making with simple linear decision surface. Decision
trees classify the examples by sorting them down the tree from the root to some
leaf node, with the leaf node providing the classification to the example. Each
node in the tree acts as a test case for some attribute, and each edge descending
from that node corresponds to one of the possible answers to the test case. This
process is recursive in nature and is repeated for every sub tree rooted at the
new nodes. A general algorithm for a decision tree can be described as follows:

1 Pick the best attribute/feature. The best attribute is one which best splits
or separates the data.

2 Ask the relevant question.

3 Follow the answer path.

4 Go to step 1 until you arrive to the answer.

The best split is one which separates two different labels into two sets.
Calculating information gain
As stated earlier, information gain is a statistical property that measures how
well a given attribute separates the training examples according to their target
classification. In the figure below, we can see that an attribute with low in-
formation gain (right) splits the data relatively evenly and as a result doesn’t
bring us any closer to a decision. Whereas, an attribute with high information
gain (left) splits the data into groups with an uneven number of positives and
negatives and as a result helps in separating the two from each other. To define
information gain precisely, we need to define a measure commonly used in in-
formation theory called entropy that measures the level of impurity in a group
of examples.

13.3.1 Advantages and Disadvantages

Following are the advantages of decision trees: -

1 Easy to use and understand.

2 Can handle both categorical and numerical data.

3 Resistant to outliers, hence require little data preprocessing.

4 New features can be easily added.

5 Can be used to build larger classifiers by using ensemble methods.

Following are the disadvantages of decision trees: -

1 Prone to over fitting.

31



 

Fig. 9 Conditional Model

2 Require some kind of measurement as to how well they are doing.

3 Need to be careful with parameter tuning.

4 Can create biased learned trees if some classes dominate.

13.4 Conditional Model

Conditional Probabilistic models is a class of statistical models in which sample
data are divided into input and output data and the relation between the two
kind of data is studied by modelling the conditional probability distribution of
the outputs given the inputs Fig. ??. This is in contrast to unconditional
models (sometimes also called generative models) where the data is studied
by modelling the joint distribution of inputs and outputs. Before introducing
conditional models, let us review the main elements of a statistical model:

1 There is a sample ξ, which can be regarded as a realization of a random
vector Ξ. (for example, could be a vector collecting the realizations of
some independent random variables);

2 The joint distribution function of the sample, denoted by FΞ(ξ), is not
known exactly;

3 The sample ξ is used to infer some characteristics of FΞ(ξ);

4 A model for Ξ is used to make inferences, where a model is simply a set
of joint distribution functions to which FΞ(ξ) is assumed to belong.

In a conditional model, the sample ξ is partitioned into inputs and outputs:
Where, y denotes the vector of outputs and x the vector of inputs.

ξ = [y x]

32



FY |X=x(y)

The object of interest is the conditional distribution function of the outputs
given the inputs and specifying a conditional model means specifying a set of
conditional distribution functions to which FY |X=x(y) is assumed to belong. In
other words, in a conditional model, the problem of model specification is sim-
plified by narrowing the focus of the statistician’s attention on the conditional
distribution of the outputs and by ignoring the distribution of the inputs. This
can be seen, for example, in the case in which both inputs and outputs are
continuous random variables. In such a case, specifying an unconditional model
is equivalent to specifying a joint probability density function fX,Y (x, y) for the
inputs and the outputs. But a joint density can be seen as the product of a
marginal and a conditional density: fX,Y (x, y) = FY |X=x(y)fX(x). So, in an
unconditional model we explicitly or implicitly specify both the marginal prob-
ability density function fX(x) and the conditional probability density function
fX,Y (x, y). On the other hand, in a conditional model, we specify only the con-
ditional fX,Y (x, y) and we leave the marginal fX(x) unspecified.
Regression and classification
The following distinction is often made, especially in the field of machine learn-
ing:

1 If the output is a continuous random variable, then a conditional model
is called a regression model;

2 If the output is a discrete random variable, taking finitely many values
(typically few), then a conditional model is called a classification model.

13.4.1 Linear regression model

The linear regression model is probably the oldest, best understood and most
widely used conditional model. In the linear regression model, the response
variables y are assumed to be a linear function of the inputs x: yi = xiβ+ εi. A
linear regression model is specified by making assumptions about the error term
εi. For example, εi is often assumed to have a normal distribution with zero
mean and to be independent of xi. In such a case, we have that, conditional
on the inputs xi, the output yi has a normal distribution with mean xiβ. As a
consequence, the conditional density of yi is:

fYi|Xi=xi(yi) =
1√
2π

1

σ
e

(
− 1

2

(yi−xiβ)
2

σ2

)

where σ2 is the variance of εi. The parameters β and σ2 are usually unknown
and need to be estimated. So, we have a different conditional distribution for
each of the values of β and σ2 that are deemed plausible by the statistician before
observing the sample. The set of all these conditional distributions (associated
to the different parameters) constitutes the conditional model for (yi, xi).

33



13.4.2 Logistic classification model

In the logistic classification model, the response variable is a Bernoulli random
variable. It can take only two values, either 1 or 0. It is assumed that the
conditional probability mass function of yi is a non-linear function of the inputs
xi:

PYi|Xi=xi(yi) =


sigm(xiβ) if yi = 1

1− sigm(xiβ) if yi = 0

0 otherwise

where xi is a 1×K vector of inputs, β is a K×1 vector of constants and sigm(t)
is the logistic function defined by

sigm(t) =
1

1− e−t

13.5 Generative Model

It is a classification technique based on Bayes’ Theorem with an assumption
of independence among predictors. In simple terms, a Naive Bayes classifier
assumes that the presence of a particular feature in a class is unrelated to the
presence of any other feature. Even if these features depend on each other or
upon the existence of the other features, all of these properties independently
contribute to the probability. Naive Bayes model is easy to build and particu-
larly useful for very large data sets. Along with simplicity, Naive Bayes is known
to outperform even highly sophisticated classification methods.
In probability and statistics, a generative model is a model for randomly generat-
ing observable data values, typically given some hidden parameters. It specifies
a joint probability distribution over observation and label sequences. Gener-
ative models are used in machine learning for either modeling data directly
(i.e., modeling observations drawn from a probability density function, or as
an intermediate step to forming a conditional probability density function. A
conditional distribution can be formed from a generative model through Bayes’
rule.
Generative models contrast with discriminative models, in that a generative
model is a full probabilistic model of all variables, whereas a discriminative
model provides a model only for the target variable(s) conditional on the ob-
served variables. Thus a generative model can be used, for example, to simulate
(i.e. generate) values of any variable in the model, whereas a discriminative
model allows only sampling of the target variables conditional on the observed
quantities. Despite the fact that discriminative models do not need to model
the distribution of the observed variables, they cannot generally express more
complex relationships between the observed and target variables. They don’t
necessarily perform better than generative models at classification and regres-
sion tasks. In modern applications the two classes are seen as complementary
or as different views of the same procedure. Examples of generative models
include:

34



� Gaussian mixture model

� Hidden Markov model

� Probabilistic context free grammar

� Naive Bayes

� Averaged one dependence estimators

� Latent Dirichlet allocation

� Restricted Boltzmann machine

� Generative adversarial networks

13.6 Nearest Neighbor

The k-nearest-neighbors algorithm is a classification algorithm, and it is super-
vised: it takes a bunch of labelled points and uses them to learn how to label
other points. To label a new point, it looks at the labelled points closest to that
new point (those are its nearest neighbors), and has those neighbors vote, so
whichever label the most of the neighbors have is the label for the new point
(the “k” is the number of neighbors it checks). K-Nearest Neighbors is one
of the most basic yet essential classification algorithms in Machine Learning.
It belongs to the supervised learning domain and finds intense application in
pattern recognition, data mining and intrusion detection. It is widely dispos-
able in real-life scenarios since it is non-parametric, meaning, it does not make
any underlying assumptions about the distribution of data (as opposed to other
algorithms such as GMM, which assume a Gaussian distribution of the given
data). In pattern recognition, the k-nearest neighbors’ algorithm (k-NN) is a
non-parametric method used for classification and regression. In both cases,
the input consists of the k closest training examples in the feature space. The
output depends on whether k-NN is used for classification or regression:

� In k-NN classification, the output is a class membership. An object is
classified by a plurality vote of its neighbors, with the object being assigned
to the class most common among its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply assigned to
the class of that single nearest neighbor.

� In k-NN regression, the output is the property value for the object. This
value is the average of the values of k nearest neighbors.

k-NN is a type of instance-based learning, or lazy learning, where the function
is only approximated locally and all computation is deferred until classification.
The k-NN algorithm is among the simplest of all machine learning algorithms.
Both for classification and regression, a useful technique can be used to assign
weight to the contributions of the neighbors, so that the nearer neighbors con-
tribute more to the average than the more distant ones. For example, a common

35



 

Fig. 10 k-NN classification

weighting scheme consists in giving each neighbor a weight of 1/d, where d is
the distance to the neighbor. The neighbors are taken from a set of objects
for which the class (for k-NN classification) or the object property value (for
k-NN regression) is known. This can be thought of as the training set for the
algorithm, though no explicit training step is required.
Algorithm
Let m be the number of training data samples. Let p be an unknown point.

1 Store the training samples in an array of data points arr[]. This means
each element of this array represents a tuple (x, y).

2 for i=0 to m:

3 Calculate Euclidean distance d(arr[i], p).

4 Make set S of K smallest distances obtained. Each of these distances
correspond to an already classified data point.

5 Return the majority label among S.

Example of k-NN classification Fig. ??. The test sample (green circle)
should be classified either to the first class of blue squares or to the second class
of red triangles. If k = 3 it is classified to the second class because there are 2
triangles and only 1 square inside the inner circle. If k = 5 it is classified to first
class (3 squares vs. 2 triangles inside the outer circle). The training examples
are vectors in a multidimensional feature space. The space is partitioned into
regions by locations and labels of the training samples. A point in the space is
assigned to the class c if it is the most frequent class label among the k nearest
training samples. Usually Euclidean distance is used. The training phase of
the algorithm consists only of storing the feature vectors and class labels of the
training samples. In the actual classification phase, the test sample (whose class
is not known) is represented as a vector in the feature space. Distances from the
new vector to all stored vectors are computed and k closest samples are selected.

36



There are a number of ways to classify the new vector to a particular class, one
of the most used technique is to predict the new vector to the most common
class amongst the K nearest neighbors. A major drawback to use this technique
to classify a new vector to a class is that the classes with the more frequent
examples tend to dominate the prediction of the new vector, as they tend to
come up in the K nearest neighbors when the neighbors are computed due to
their large number. One of the ways to overcome this problem is to take into
account the distance of each K nearest neighbors with the new vector that is to
be classified and predict the class of the new vector based on these distances.
Parameter selection
The best choice of k depends upon the data; generally, larger values of k reduces
effect of the noise on the classification, but make boundaries between classes less
distinct. A good k can be selected by various heuristic techniques (see hyperpa-
rameter optimization). The special case where the class is predicted to be the
class of the closest training sample (i.e. when k = 1) is called the nearest neigh-
bor algorithm. The accuracy of the k-NN algorithm can be severely degraded by
the presence of noisy or irrelevant features, or if the feature scales are not con-
sistent with their importance. Much research effort has been put into selecting
or scaling features to improve classification. A particularly popular approach is
the use of evolutionary algorithms to optimize feature scaling. Another popular
approach is to scale features by the mutual information of the training data with
the training classes. In binary (two class) classification problems, it is helpful
to choose k to be an odd number as this avoids tied votes. One popular way of
choosing the empirically optimal k in this setting is via bootstrap method.
The 1-nearest neighbor classifier
The most intuitive nearest neighbour type classifier is the one nearest neighbour
classifier that assigns a point x to the class of its closest neighbour in the feature
space. As the size of training data set approaches infinity, the one nearest neigh-
bour classifier guarantees an error rate of no worse than twice the Bayes error
rate (the minimum achievable error rate given the distribution of the data).
A few Applications and Examples of KNN

� Credit ratings-collecting financial characteristics vs. comparing people
with similar financial features to a database. By the very nature of a
credit rating, people who have similar financial details would be given
similar credit ratings. Therefore, they would like to be able to use this
existing database to predict a new customer’s credit rating, without having
to perform all the calculations.

� Should the bank give a loan to an individual? Would an individual default
on his or her loan? Is that person closer in characteristics to people who
defaulted or did not default on their loans?

� In political science-classing a potential voter to a “will vote” or “will not
vote”, or to “vote Democrat” or “vote Republican”.

37



� More advance examples could include handwriting detection (like OCR),
image recognition and even video recognition.

Some pros and cons of KNN :
Pros:

� No assumptions about data - useful, for example, for non-linear data

� Simple algorithm - to explain and understand/interpret

� High accuracy (relatively) - it is pretty high but not competitive to better
supervised learning models

� Versatile - useful for classification or regression

Cons:

� Computationally expensive - because the algorithm stores all of the train-
ing data

� High memory requirement

� Stores all (or almost all) of the training data

� Prediction stage might be slow (with big N)

� Sensitive to irrelevant features and the scale of the data

38


