
Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology

(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in

www.akyadav.in
+91 9911375598

September 5, 2019

Dr. A K Yadav Algorithms Design and Analysis 1/1



Step 1: The structure of an OBST I

I Let T is a optimal tree having subtree T ′ with keys ki . . . kj
and dummy keys di−1 . . . dj for some 1 ≤ i ≤ j ≤ n

I Then T ′ will also be a optimal subtree
I We can find the optimal cost of the tree by optimal cost of

the subtree
I Take kr as the root from keys ki to kj and dummy keys di−1

to dj

I Now there are two subtrees one having keys from ki to kr−1
with dummy keys from di−1 to dr−1

I The second tree having keys from kr+1 to kj with dummy
keys from dr to dj

Dr. A K Yadav Algorithms Design and Analysis 2/1



Step 1: The structure of an OBST II

I Now the total cost of the tree will be sum of cost of left
subtree having keys from ki to kr−1 with dummy keys from
di−1 to dr−1 plus cost of right subtree having keys from kr+1
to kj with dummy keys from dr to dj plus cost of key kr

I di is the dummy key between the keys ki and ki+1

I If we choose ki as the root then there is no key (keys from ki
to ki−1) on left subtree but only one dummy key di−1

I If we choose kj as the root then there is no key (keys from
kj+1 to kj) on right subtree but only one dummy key dj

I By taking all key from ki to kj as root one by one, we can find
the optimal cost of the tree

Dr. A K Yadav Algorithms Design and Analysis 3/1



Step 2: A recursive solution I

I Let a subproblem with keys ki to kj and dummy keys di−1 to
dj where i ≥ 1, j ≤ n and j ≥ i − 1

I Let e[i , j] is the expected cost of searching an optimal binary
search tree containing the keys ki to kj and dummy keys di−1
to dj

I Finally we have to find out e[1, n]
I Let w [i , j] is the sum of the probability of all the keys ki . . . kj

and dummy keys di−1 . . . dj and w [1, n] = 1

w [i , j] =
j∑

k=i
pk +

j∑
k=i−1

qk

I When j = i − 1 then no key but only dummy key so
e[i , i − 1] = qi−1 and w [i , i − 1] = qi−1

Dr. A K Yadav Algorithms Design and Analysis 4/1



Step 2: A recursive solution II

I When j > i − 1, then take a key kr as root such that left
subtree having keys from ki to kr−1 and right subtree having
keys from kr+1 to kj is optimal

I When a tree becomes subtree of a root node then hight of the
each node of the tree increases by one.

I The expected search cost of this subtree increases by the sum
of all the probabilities in the subtree i.e.

e[i , r − 1] = e[i , r − 1] + w [i , r − 1]

e[r + 1, j] = e[r + 1, j] + w [r + 1, j]

Dr. A K Yadav Algorithms Design and Analysis 5/1



Step 2: A recursive solution III

I Taking kr as the root e[i , j] becomes

e[i , j] = e[i , r − 1] + w [i , r − 1] + pr + e[r + 1, j] + w [r + 1, j]

e[i , j] = e[i , r − 1] + e[r + 1, j] + w [i , j]

∵ w [i , j] = w [i , r − 1] + pr + w [r + 1, j]
I The recursive solution will be:

e[i , j] =

qi−1 if j = i − 1
min

i≤r≤j
{e[i , r − 1] + e[r + 1, j] + w [i , j]} if j > i − 1

Dr. A K Yadav Algorithms Design and Analysis 6/1



Step 3: Computing the expected search cost of OBST I

I Optimal cost of OBST is stored in e[1 . . . n + 1, 0 . . . n] that is
size of upper triangular matrix is (n + 1)× (n + 1).

I e[1, 0] is used to store the value of d0 and e[n + 1, n] is used
to store the value of dn

I e[i , j] is used to store the value of optimal search cost of the
keys from ki to kj for 1 ≤ i ≤ n + 1, 0 ≤ j ≤ n, and j ≥ i − 1

I root[i , j] is used to store the root of the tree having keys from
ki to kj for 1 ≤ i ≤ j ≤ n

I e[i , i − 1] = w [i , i − 1] = qi−1 for 1 ≤ i ≤ n + 1
I w [i , j] = w [i , j − 1] + pj + qj for 1 ≤ i ≤ n + 1, j > i − 1
I e[i , j] = min

i≤r≤j
{e[i , r − 1] + e[r + 1, j] + w [i , j]} for j > i − 1

Dr. A K Yadav Algorithms Design and Analysis 7/1



Step 3: Computing the expected search cost of OBST II

Bottom-up Approach:
OPTIMAL-BST(p,q,n)

1. Let e[1 . . . n + 1, 0 . . . n], w [1 . . . n + 1, 0 . . . n] and
root[1 . . . n, 1 . . . n]

2. for i = 1 to n + 1 //when no keys, will be only one dummy key
3. w [i , i − 1] = qi−1

4. e[i , i − 1] = qi−1

5. for l = 1 to n // l number of keys in the subtree
6. for i = 1 to n − l + 1
7. j = i + l − 1
8. e[i , j] =∞
9. w [i , j] = w [i , j − 1] + pj + qj

10. for r = i to j

Dr. A K Yadav Algorithms Design and Analysis 8/1



Step 3: Computing the expected search cost of OBST III

11. q = e[i , r − 1] + e[r + 1, j] + w [i , j]
12. if q < e[i , j]
13. e[i , j] = q
14. root[i , j] = r
15. return e, root

Dr. A K Yadav Algorithms Design and Analysis 9/1



Step 3: Computing the expected search cost of OBST IV

Top-down Approach:
MEMOIZED-OPTIMAL-BST(p,q,n)

1. Let e[1 . . . n + 1, 0 . . . n], w [1 . . . n + 1, 0 . . . n] and
root[1 . . . n, 1 . . . n]

2. for i = 1 to n + 1
3. for j = i − 1 to n
4. e[i , j] =∞
5. if j = i − 1
6. w [i , j] = qi−1

7. else
8. w [i , j] = w [i , j − 1] + pj + qj

9. return LOOKUP-OBST(e,w,root,p,q,1,n)

Dr. A K Yadav Algorithms Design and Analysis 10/1



Step 3: Computing the expected search cost of OBST V

LOOKUP-OBST(e,w,root,p,q,i,j)
1. if e[i , j] <∞
2. return e[i , j]
3. if j = i − 1
4. e[i , j] = qi−1

5. else for r = i to j
6. q =LOOKUP-OBST(e,w,root,p,q,i,r-1)

+LOOKUP-OBST(e,w,root,p,q,r+1,j)+w [i , j]
7. if q < e[i , j]
8. e[i , j] = q
9. root[i , j] = r

10. return e[i , j]

Dr. A K Yadav Algorithms Design and Analysis 11/1



Step 4: Constructing an OBST I

I Table e[i , j] gives the cost of OBST for the keys ki to kj with
dummy keys di−1 to dj

I Table root[i , j] store the root node kr = kroot[i ,j]
I At kr = kroot[i ,j] there will be two subtree: one left subtree

with keys ki to kroot[i ,j]−1 and second right subtree with
kroot[i ,j]+1 to kj

I First call will be:
I if n ≥ 1 //atleast one key
I r = root[1, n]
I print kr is the root of the OBST
I PRINT-OBST(root, i , r − 1, r , ”left”)
I PRINT-OBST(root, r + 1, j , r , ”right”)
I else
I print d0 is the root of the OBST

Dr. A K Yadav Algorithms Design and Analysis 12/1



Step 4: Constructing an OBST II

PRINT-OBST(root,i,j,r,child)
1. if i ≤ j
2. c = root[i , j]
3. print kc is child of kr

4. PRINT-OBST(root, i , r − 1, c, ”left”)
5. PRINT-OBST(root, r + 1, j , c, ”right”)

Complexity of the OBST is O(n3)

Dr. A K Yadav Algorithms Design and Analysis 13/1



Thank you

Please send your feedback or any queries to akyadav1@amity.edu,
akyadav@akyadav.in or contact me on +91 9911375598

Dr. A K Yadav Algorithms Design and Analysis 14/1


