Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology
(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in
www.akyadav.in
+91 9911375598

September 5, 2019

Step 1: The structure of an OBST I

- ▶ Let T is a optimal tree having subtree T' with keys $k_i \dots k_j$ and dummy keys $d_{i-1} \dots d_j$ for some $1 \le i \le j \le n$
- ightharpoonup Then T' will also be a optimal subtree
- We can find the optimal cost of the tree by optimal cost of the subtree
- ▶ Take k_r as the root from keys k_i to k_j and dummy keys d_{i-1} to d_j
- Now there are two subtrees one having keys from k_i to k_{r-1} with dummy keys from d_{i-1} to d_{r-1}
- ▶ The second tree having keys from k_{r+1} to k_j with dummy keys from d_r to d_j

Step 1: The structure of an OBST II

- Now the total cost of the tree will be sum of cost of left subtree having keys from k_i to k_{r-1} with dummy keys from d_{i-1} to d_{r-1} plus cost of right subtree having keys from k_{r+1} to k_j with dummy keys from d_r to d_j plus cost of key k_r
- $ightharpoonup d_i$ is the dummy key between the keys k_i and k_{i+1}
- If we choose k_i as the root then there is no key (keys from k_i to k_{i-1}) on left subtree but only one dummy key d_{i-1}
- If we choose k_j as the root then there is no key (keys from k_{j+1} to k_j) on right subtree but only one dummy key d_j
- ▶ By taking all key from k_i to k_j as root one by one, we can find the optimal cost of the tree

Step 2: A recursive solution I

- Let a subproblem with keys k_i to k_j and dummy keys d_{i-1} to d_j where $i \geq 1$, $j \leq n$ and $j \geq i-1$
- Let e[i,j] is the expected cost of searching an optimal binary search tree containing the keys k_i to k_j and dummy keys d_{i-1} to d_j
- Finally we have to find out e[1, n]
- Let w[i,j] is the sum of the probability of all the keys $k_i \dots k_j$ and dummy keys $d_{i-1} \dots d_j$ and w[1,n]=1

$$w[i,j] = \sum_{k=i}^{j} p_k + \sum_{k=i-1}^{j} q_k$$

When j = i - 1 then no key but only dummy key so $e[i, i - 1] = q_{i-1}$ and $w[i, i - 1] = q_{i-1}$

Step 2: A recursive solution II

- ▶ When j > i 1, then take a key k_r as root such that left subtree having keys from k_i to k_{r-1} and right subtree having keys from k_{r+1} to k_i is optimal
- ▶ When a tree becomes subtree of a root node then hight of the each node of the tree increases by one.
- ► The expected search cost of this subtree increases by the sum of all the probabilities in the subtree i.e.

$$e[i, r-1] = e[i, r-1] + w[i, r-1]$$

$$e[r+1,j] = e[r+1,j] + w[r+1,j]$$

Step 2: A recursive solution III

▶ Taking k_r as the root e[i,j] becomes

$$e[i,j] = e[i,r-1] + w[i,r-1] + p_r + e[r+1,j] + w[r+1,j]$$

$$e[i,j] = e[i,r-1] + e[r+1,j] + w[i,j]$$

$$w[i,j] = w[i,r-1] + p_r + w[r+1,j]$$

The recursive solution will be:

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\} & \text{if } j > i-1 \end{cases}$$

Step 3: Computing the expected search cost of OBST I

- ▶ Optimal cost of OBST is stored in e[1 ... n + 1, 0 ... n] that is size of upper triangular matrix is $(n + 1) \times (n + 1)$.
- ▶ e[1,0] is used to store the value of d_0 and e[n+1,n] is used to store the value of d_n
- ▶ e[i,j] is used to store the value of optimal search cost of the keys from k_i to k_j for $1 \le i \le n+1, 0 \le j \le n$, and $j \ge i-1$
- ▶ root[i, j] is used to store the root of the tree having keys from k_i to k_i for $1 \le i \le j \le n$
- $e[i, i-1] = w[i, i-1] = q_{i-1}$ for $1 \le i \le n+1$
- $w[i,j] = w[i,j-1] + p_j + q_j$ for $1 \le i \le n+1, j > i-1$
- $e[i,j] = \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w[i,j]\}$ for j > i-1

Step 3: Computing the expected search cost of OBST II

Bottom-up Approach:

OPTIMAL-BST(p,q,n)

- 1. Let e[1 ... n + 1, 0 ... n], w[1 ... n + 1, 0 ... n] and root[1 ... n, 1 ... n]
- 2. for i = 1 to n+1 //when no keys, will be only one dummy key
- 3. $w[i, i-1] = q_{i-1}$
- 4. $e[i, i-1] = q_{i-1}$
- 5. for l = 1 to n / / l number of keys in the subtree
- 6. for i = 1 to n l + 1
- 7. j = i + l 1
- 8. $e[i,j] = \infty$
- 9. $w[i,j] = w[i,j-1] + p_j + q_j$
- 10. for r = i to j

Step 3: Computing the expected search cost of OBST III

11.
$$q = e[i, r-1] + e[r+1, j] + w[i, j]$$

12. if
$$q < e[i,j]$$

13.
$$e[i,j] = q$$

14.
$$root[i,j] = r$$

15. return *e*, *root*

Step 3: Computing the expected search cost of OBST IV

Top-down Approach:

MEMOIZED-OPTIMAL-BST(p,q,n)

- 1. Let e[1 ... n + 1, 0 ... n], w[1 ... n + 1, 0 ... n] and root[1 ... n, 1 ... n]
- 2. for i = 1 to n + 1
- 3. for j = i 1 to n
- 4. $e[i,j] = \infty$
- 5. if j = i 1
- $6. w[i,j] = q_{i-1}$
- 7. else
- 8. $w[i,j] = w[i,j-1] + p_j + q_j$
- 9. return LOOKUP-OBST(e,w,root,p,q,1,n)

Step 3: Computing the expected search cost of OBST V

LOOKUP-OBST(e,w,root,p,q,i,j)

- 1. if $e[i,j] < \infty$
- 2. return e[i,j]
- 3. if j = i 1
- 4. $e[i,j] = q_{i-1}$
- 5. else for r = i to j
- 6. q = LOOKUP-OBST(e,w,root,p,q,i,r-1) + LOOKUP-OBST(e,w,root,p,q,r+1,j)+w[i,j]
- 7. if q < e[i, j]
- 8. e[i,j] = q
- 9. root[i,j] = r
- 10. return e[i,j]

Step 4: Constructing an OBST I

- ▶ Table e[i, j] gives the cost of OBST for the keys k_i to k_j with dummy keys d_{i-1} to d_j
- ► Table root[i,j] store the root node $k_r = k_{root[i,j]}$
- At $k_r = k_{root[i,j]}$ there will be two subtree: one left subtree with keys k_i to $k_{root[i,j]-1}$ and second right subtree with $k_{root[i,j]+1}$ to k_j
- First call will be:
- if $n \ge 1$ //atleast one key
- r = root[1, n]
- \triangleright print k_r is the root of the OBST
- ▶ PRINT-OBST(root, i, r − 1, r, "left")
- ightharpoonup PRINT-OBST(root, r + 1, j, r, "right")
- else
- print d_0 is the root of the OBST

Step 4: Constructing an OBST II

PRINT-OBST(root,i,j,r,child)

- 1. if $i \leq j$
- 2. c = root[i, j]
- 3. print k_c is child of k_r
- 4. PRINT-OBST(root, i, r 1, c, "left")
- 5. PRINT-OBST(root, r + 1, j, c, "right")

Complexity of the OBST is $O(n^3)$

Thank you

Please send your feedback or any queries to akyadav1@amity.edu, akyadav@akyadav.in or contact me on +91~9911375598

