Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology
(affiliated to GGSIPU, Delhi)
akyadavl@amity.edu
akyadav@akyadav.in
www.akyadav.in
+91 9911375598

September 5, 2019

Dr. A K Yadav Algorithms Design and Analysis 1/1

Step 1: The structure of an OBST |

> Let T is a optimal tree having subtree T with keys ;... ki
and dummy keys d;_1...d; forsome 1 <i<j<n
» Then T will also be a optimal subtree

> We can find the optimal cost of the tree by optimal cost of
the subtree

» Take k, as the root from keys k; to k; and dummy keys d;_;
to dj

> Now there are two subtrees one having keys from k; to k,_1
with dummy keys from d;_1 to d,_1

» The second tree having keys from k.11 to k; with dummy
keys from d, to d;

Dr. A K Yadav Algorithms Design and Analysis 2/1

Step 1: The structure of an OBST I

» Now the total cost of the tree will be sum of cost of left
subtree having keys from k; to k,_1 with dummy keys from
di_1 to d,_1 plus cost of right subtree having keys from k,,1
to k; with dummy keys from d, to d; plus cost of key k,

P d; is the dummy key between the keys k; and kj;1

» If we choose k; as the root then there is no key (keys from k;
to ki_1) on left subtree but only one dummy key d;_1

» If we choose k; as the root then there is no key (keys from
ki1 to k;) on right subtree but only one dummy key dj

» By taking all key from k; to k; as root one by one, we can find
the optimal cost of the tree

Dr. A K Yadav Algorithms Design and Analysis 3/1

Step 2: A recursive solution |

>

>

Let a subproblem with keys k; to k; and dummy keys d;_1 to
diwhere i >1,j<nandj>i—1

Let e[i,/] is the expected cost of searching an optimal binary
search tree containing the keys k; to k; and dummy keys d;_;
to dj

Finally we have to find out e[1, n]

Let w[i,j] is the sum of the probability of all the keys k; ... k;
and dummy keys dj_1...d; and w[l,n] =1

wli,j] = Zpk+ Z ax
k=i—1

When j = i — 1 then no key but only dummy key so
e[i, i — 1] =dj-1 and W[I'7 i — 1] =di-1

Dr. A K Yadav Algorithms Design and Analysis 4/1

Step 2: A recursive solution Il

» When j > i — 1, then take a key k, as root such that left
subtree having keys from k; to k,_1 and right subtree having
keys from k,11 to k; is optimal

» When a tree becomes subtree of a root node then hight of the
each node of the tree increases by one.

P> The expected search cost of this subtree increases by the sum
of all the probabilities in the subtree i.e.

eli,r—1)=el[i,r =11 + wli,r — 1]

e[r+1,j]=-¢€[r+1,j]+ w[r+1,]]

Dr. A K Yadav Algorithms Design and Analysis 5/1

Step 2: A recursive solution Il

» Taking k, as the root e[i,] becomes
eli,j]=eli,r =1+ wli,r =1+ pr+e[r +1,j] + w[r + 1,]]

eli,jl] = eli,r — 1] + e[r + 1,4] + wli,]
cwliyj] = wli,r— 1]+ pr + wlr +1,J]

» The recursive solution will be:

. gi-1 ifj=i—1
eli,j] = {

min {e[i,r — 1]+ e[r+ 1,j] + w[i,j]} ifj>i—1
i<r<j

Dr. A K Yadav Algorithms Design and Analysis 6/1

Step 3: Computing the expected search cost of OBST |

» Optimal cost of OBST is stored in e[1...n+1,0...n| that is
size of upper triangular matrix is (n+ 1) x (n+1).

» ¢[1,0] is used to store the value of dy and e[n+ 1, n] is used
to store the value of d,

» ¢[i,j] is used to store the value of optimal search cost of the
keys from k; to ki for 1 <i<n+1,0<j<n,andj>i—-1

» root[i,j] is used to store the root of the tree having keys from
k,-tokjforlgigjgn

> eli,i—1]=w[i,i—1]=gi—1for1<i<n+1
wli,jl=wli,j—1]+pj+qfor1<i<n+1,j>i-1
> eli,] :I@rigj{e[i,r—1]—|—e[r—i—1,j]+w[i,j]} forj>i—1

v

Dr. A K Yadav Algorithms Design and Analysis 7/1

Step 3: Computing the expected search cost of OBST Il

Bottom-up Approach:
OPTIMAL-BST(p,q,n)

1. Letell...n+1,0...n,w[l...n+1,0...n] and
root[l...n,1...n]

2. fori=1to n+1 //when no keys, will be only one dummy key
3. wli,i—1]=gqi1
4, eli,i—1] = gi—1
5. for =1to n // | number of keys in the subtree
6. fori=1lton—1+1
7. j=i+l—1
8. eli,j] = oo
9. wli, jl = wli,j — 1] + p; + q;
10. forr=1itoj

Dr. A K Yadav Algorithms Design and Analysis 8/1

Step 3: Computing the expected search cost of OBST I

11. qg=c¢eli,r—1]+e[r +1,j] + wli,j]
12. if g < eli,j]

13. eli,jl=aq

14. root[i,j] = r

15. return e, root

Dr. A K Yadav Algorithms Design and Analysis 9/1

Step 3: Computing the expected search cost of OBST IV

Top-down Approach:
MEMOIZED-OPTIMAL-BST(p,q,n)

1. Letell...n+1,0...n,w[l...n+1,0...n] and
root[1...n,1...n]

2. fori=1ton+1

3 forj=i—1ton

4 eli,j] = o

5 if j=i—1

6. wli,j] = gi-1

7 else

8 wli,jl = wli,j — 1]+ p; + q;

9. return LOOKUP-OBST (e,w,root,p,q,1,n)

Dr. A K Yadav Algorithms Design and Analysis 10/1

Step 3: Computing the expected search cost of OBST V

LOOKUP-OBST (e,w,root,p,q,i,j)
1. if e[i,j] < o0

N

return e[i,]
ifj=i—1

eli,j] = qi-1
else for r =i toj

q =LOOKUP-OBST(e,w,root,p,q,i,r-1)
+LOOKUP-OBST (e,w,root,p,q,r+1,j)+wli, j]

7. if g <elij]
8. elijl=gq
9. root[i,jl = r

o o s~ w

10. return e[i,]

Dr. A K Yadav Algorithms Design and Analysis 11/1

Step 4: Constructing an OBST |

> Table e[/, j] gives the cost of OBST for the keys k; to k; with
dummy keys d;_; to d;
» Table root[i, j] store the root node k; = kyoo[ijj

v

At kr = Kyoot[i j] there will be two subtree: one left subtree
with keys ki to Kkyoot[ij—1 and second right subtree with

Kroot[ij]+1 to K;
First call will be:
if n > 1 //atleast one key
r = root[1, nj
print k, is the root of the OBST
PRINT-OBST(root, i,r — 1, r,"left")
PRINT-OBST(root, r +1,j, r, "right")
else
print dp is the root of the OBST

vVvvyvVvYvVvyVvYvyy

Dr. A K Yadav Algorithms Design and Analysis 12/1

Step 4: Constructing an OBST I

PRINT-OBST(root,i,j,r,child)
1 ifi<j
2. ¢ =root[i,]]
3. print k¢ is child of k,
4. PRINT-OBST(root,i,r —1,c,"left")
5. PRINT-OBST(root, r +1,j, c, "right")
Complexity of the OBST is O(n?)

Dr. A K Yadav Algorithms Design and Analysis 13/1

Please send your feedback or any queries to akyadavl@amity.edu,
akyadav@akyadav.in or contact me on +91 9911375598

Dr. A K Yadav Algorithms Design and Analysis 14/1

