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Extended-value extensions

•A function is convex if and only if it is convex when restricted to any line that 

intersects its domain.
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First-order conditions
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Second-order conditions
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Duality, KKT conditions

•The Lagrangian
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•The Lagrange dual function
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•Lower bounds on optimal value
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•Linear approximation interpretation
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•Linear approximation interpretation

•The Lagrangian and lower bound property can be given a simple 

interpretation, based on a linear approximation of the indicator functions of 

the sets {0} and −𝑅𝑅+.
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Logarithmic barrier
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Central path
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Dual points from central path
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Projected gradients

•Constrained and unconstrained problem

•Understanding the geometry of projection

•PGD is a special case of proximal gradient
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Constrained and 
unconstrained problem
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Solving unconstrained problem 
by gradient descent
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Solving constrained problem 
by projected gradient descent
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Comparing PGD to GD
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Understanding the 
geometry of projection
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Kriging
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Isotonic Regression
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Isotonic

•Piece-wise linear model

•Monotonic constraint
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Least absolute shrinkage 
and selection operator

•Least absolute shrinkage and selection operator (LASSO) regression is a 

form of supervised statistical learning (i.e., machine learning) aimed at 

improving prediction

•LASSO regression effectively selects only the most important predictor 

variables for predicting an outcome by shrinking the regression coefficients 

associated with the least important predictor variables to zero
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•General reasons for applying LASSO regression:

To avoid overfitting a model to the data on which it was estimated (i.e., 

trained), which can be problematic with conventional regression techniques 

(e.g., linear, logistic), especially when there is a large number of predictor 

variables

To select the most important predictor variables (i.e., features) from a 

much larger number of predictor variables
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•LASSO regression is a regularization method (specifically an L1 

regularization method) and is related to other regularization methods like 

ridge regression and elastic net

•The purpose of regularization is to reduce variance of parameter estimates 

(i.e., regression coefficients), even if it comes at the expense of some 

additional bias; ultimately, this means finding the optimal level of model 

complexity
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•Technically, LASSO regression involves two tuning parameters called alpha 

and lambda, but because alpha=1 for LASSO regression.

•We will focus on lambda because it can be varied during model training

•The lambda tuning parameter places a constraint on the maximum absolute 

value of the regression coefficients in the model and adds a penalty to non-

zero regression coefficients
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•Effects of different lambda values:

When lambda is zero, the results will approximate a conventional (e.g., 

ordinary least squares [OLS] regression) model, and no regression 

coefficients associated with predictor variables shrink to zero {i.e., be 

eliminated) 

When lambda is large, regression coefficients with smaller absolute values 

shrink toward zero

When lambda becomes too large, all regression coefficients shrink to zero
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As lambda gets smaller, variance grows larger

As lambda gets larger, bias grows larger

•Traditionally, LASSO regression has been applied to linear regression 

models

•LASSO regression can, however, also be applied to other families of models, 

such as generalized linear models which include logistic regression models
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Least Angle Regression (LARS)
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•Where 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 , … , 𝑥𝑥𝑝𝑝 are the 𝑝𝑝 feature or predictor or covariates

• �𝜇𝜇0, �𝜇𝜇1, … , �𝜇𝜇𝑝𝑝 are the prediction vector

• �𝑦𝑦1, �𝑦𝑦2, … , �𝑦𝑦𝑝𝑝 are projection

•𝑢𝑢2 is unit vector along bisector

•𝑦𝑦 = 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝

• ⟨𝑥𝑥𝑗𝑗 , 𝑟𝑟⟩ is a dot product between 𝑥𝑥𝑗𝑗 and residual 𝑟𝑟
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LARS Algorithms

1. Standardize features 𝑥𝑥𝑗𝑗 to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 1

2. Get residual 𝑟𝑟 = 𝑦𝑦 − �𝑦𝑦 where coefficients 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑝𝑝 = 0

3. Find a feature 𝑥𝑥𝑗𝑗 "most correlated" with residual 𝑟𝑟

4. Incrementally update coefficients 𝛽𝛽𝑗𝑗 from zero to least squares coefficient ⟨𝑥𝑥𝑗𝑗 , 𝑟𝑟⟩

until another feature 𝑥𝑥𝑘𝑘 has the same correlation as 𝑥𝑥𝑗𝑗 with residual 𝑟𝑟. 

5. Now, move (𝛽𝛽𝑗𝑗 ,𝛽𝛽𝑘𝑘) in the direction defined by their joint least square coefficients 

of current residual on (𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘), until some another competitor 𝑥𝑥𝑙𝑙 has same 

correlation with the residual 𝑟𝑟. 

6. Repeat for all 𝑝𝑝 features 

7. After 𝑝𝑝 steps, we arrive at full least squares solution
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