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A function f : R" — R is conver if dom f is a convex set and if for all =z,
y € dom f, and # with 0 < # < 1, we have

fl0r+ (1=0)y) <Of(x)+(1—-06)f(y). (3.1)
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* A function is convex if and only if it is convex when restricted to any line that

Intersects its domain.

It is often convenient to extend a convex function to all of R™ by defining its value
to be oo outside its domain. If f is convex we define its extended-value exrtension

e

f:R"—=RU{x} by

) flz) x€domf
(x) = o0 r & dom f.
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Example 3.1 Indicator function of a convex set. Let €' C R"™ be a convex set, and
consider the (convex) function /¢ with domain C' and Ic(x) = 0 for all x € C. In
other words, the function is identically zero on the set (. Its extended-value extension

~ 0 xzeC
IC(T)_{ x x¢&C.

is given by

The convex function I, c is called the indicator function of the set C.
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Suppose [ is differentiable (7.e., its gradient V f exists at each point in dom f,
which is open). Then f is convex if and only if dom f is convex and

fly) = fla) + V()" (y — =) (3.2)

holds for all z, y € dom f. This inequality is illustrated in figure 3.2.
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Figure 3.2 If f is convex and differentiable, then f(z)+V f(z)! (y—z) < f(y)
for all x, y € dom f.
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Strict convexity can also be characterized by a first-order condition: f is strictly
convex if and only if dom f is convex and for z, y € dom f, = # y. we have

fly) > f@) + V() (y — ). (3.3)
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We now assume that f is twice differentiable, that is, its Hessian or second deriva-
tive V2 f exists at each point in dom f, which is open. Then f is convex if and
only if dom f is convex and its Hessian is positive semidefinite: for all # € dom f,

V2f(x) = 0.

For a function on R, this reduces to the simple condition f”(z) > 0 (and dom f
convex, ¢.e., an interval), which means that the derivative is nondecreasing. The
condition V2 f(x) = 0 can be interpreted geometrically as the requirement that the
oraph of the function have positive (upward) curvature at x. We leave the proof
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* The Lagrangian

We consider an optimization problem in the standard form (4.1):

minimize  fo(x)
subject to  fi(x) <0, i=1,.... m (5.1)
hi(z) =0, 1

with variable » € R™. We assume its domain D = (), ,dom f; N (., dom /;
is nonempty, and denote the optimal value of (5.1) by p*. We do not assume the
problem (5.1) is convex.
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The basic idea in Lagrangian duality is to take the constraints in (5.1) into
account by augmenting the objective function with a weighted sum of the constraint
functions. We define the Lagrangian L : R™ x R™ x R? — R associated with the
problem (5.1) as

L(z. A\ v) = folz) + > _Nifi(x) + > _wvihi(x),
1=1 =1

with dom L =D x R™ x RP. We refer to \; as the Lagrange multiplier associated
with the ith inequality constraint f;(x) < 0; similarly we refer to v; as the Lagrange
multiplier associated with the zth equality constraint /;(x) = 0. The vectors A and
v are called the dual variables or Lagrange multiplier vectors associated with the
problem (5.1).



Department of Computer

AMITY Science and Engineering

UNIVERSITY

* The Lagrange dual function

We define the Lagrange dual function (or just dual function) g : R™ x R — R as
the minimum value of the Lagrangian over x: for A € R™, v € R?,

m P
g(A,v)=inf L(xz, \,v) = inf | fo(x)+ E A\ filx) + E vih;(x)
' xeD xeD : .
1,:]_ T:]_
When the Lagrangian is unbounded below in z. the dual function takes on the
value —oo. Since the dual function is the pointwise infimum of a family of affine
functions of (A, r), it is concave, even when the problem (5.1) is not convex.
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* _Lower bounds on optimal value

The dual function yields lower bounds on the optimal value p* of the problem (5.1):
For any A = 0 and any v we have

g(Av) <p*. (5.2)

This important property is easily verified. Suppose x is a feasible point for the
problem (5.1), z.e., f;(z) < 0 and h;(z) = 0, and A = 0. Then we have

T p
Z i fi(T) + Z vih;(x) <0,
1—=1 1—=1
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since each term in the first sum is nonpositive, and each term in the second sum is
zero, and therefore

L(i A\ v) = fo(#) +ZAfz +th@ ) < fol@).

Hence

g\, v) = 111£L(£ ANv) < Lz, \v) < folx).

Since g(A,v) < fo(x) holds for every feasible point z, the inequality (5.2) follows.
The lower bound (5.2) is illustrated in figure 5.1, for a simple problem with = € R
and one inequality constraint.
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The inequality (5.2) holds, but is vacuous, when ¢g(A.v) = —oc. The dual

function gives a nontrivial lower bound on p* only when A = 0 and (\,») € dom g.
i.e., g(\,v) > —oo. We refer to a pair (A, ) with A = 0 and (\,v) € dom g as dual
feasible, for reasons that will become clear later.



AMITY

UNIVERSITY

Department of Computer
Science and Engineering

* Linear approximation interpretation

D

| )



Department of Computer

AMITY Science and Engineering

UNIVERSITY

Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function fo, and the dashed curve shows the constraint function f;.
The feasible set is the interval [—0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are z* = —0.46, p* = 1.54
(shown as a circle). The dotted curves show L(x, \) for A = 0.1, 0.2,...,1.0.
Each of these has a minimum value smaller than p*, since on the feasible set

(and for A > 0) we have L(z. \) < fo(x).



AMITY

UNIVERT™"™

o

-

s
Vel

1.6

1.31

1.27

1.1}

1

1.4 -

0

0.2

0.4

A

Department of Computer
Science and Engineering

Figure 5.2 The dual function g for the problem in figure 5.1. Neither fy nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p*, the optimal value of the problem.
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* Linear approximation interpretation

* The Lagrangian and lower bound property can be given a simple
iInterpretation, based on a linear approximation of the indicator functions of
the sets {0} and —R,..

We first rewrite the original problem (5.1) as an unconstrained problem,

minimize fo(z) + >, I_(fi(x)) + > 5, To(hi(x)), (5.3)

where I_ : R — R is the indicator function for the nonpositive reals.

rw={ % 13y

~ u > 0.
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and similarly, Iy is the indicator function of {0}. In the formulation (5.3), the func-
tion /_(u) can be interpreted as expressing our irritation or displeasure associated
with a constraint function value v = f;(x): It is zero if f;(z) < 0, and infinite if
fi(x) > 0. In a similar way, Iy(u) gives our displeasure for an equality constraint
value u = h;(x). We can think of I_ as a “brick wall” or “infinitely hard” displea-
sure function; our displeasure rises from zero to infinite as f;(x) transitions from
nonpositive to positive.

Now suppose in the formulation (5.3) we replace the function I_(u) with the
linear function \;u, where A; > 0, and the function Iy(u) with v;u. The objective
becomes the Lagrangian function L(z, A, r). and the dual function value g(\.v) is
the optimal value of the problem

minimize L(z, A\, v) = fo(z) + D0 Nifilw) + D0 vihi(x). (5.4)
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In this formulation, we use a linear or “soft” displeasure function in place of I_
and Iy. For an inequality constraint, our displeasure is zero when f;(x) = 0., and is
positive when f;(x) > 0 (assuming A; > 0); our displeasure grows as the constraint
becomes “more violated”. Unlike the original formulation, in which any nonpositive
value of f;(x) is acceptable, in the soft formulation we actually derive pleasure from
constraints that have margin, z.e., from f;(z) < 0.

Clearly the approximation of the indicator function 7_(u) with a linear function
A\;u 1s rather poor. But the linear function is at least an underestimator of the
indicator function. Since \;u < I_(u) and v;u < Ip(w) for all u, we see immediately
that the dual function yvields a lower bound on the optimal value of the original
problem.
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In this chapter we discuss interior-point methods for solving convex optimization
problems that include inequality constraints,

minimize  fo(x)

subject to  fi(z) <0, i=1,...,m (11.1)
Ar = b,
where fo..... fm : R™ — R are convex and twice continuously differentiable, and

A e RP*™ with rank A = p < n. We assume that the problem is solvable, i.e., an
optimal z* exists. We denote the optimal value fo(x*) as p*.
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We also assume that the problem is strictly feasible, 7.e., there exists x € D that
satisfies Ar = b and f;(x) < 0fori =1,...,m. This means that Slater’s constraint

qualification holds, so there exist dual optimal \* € R"™, v* € R?, which together
with z* satisfy the KK'T' conditions

Arx*=0b, fi(z*) < 0, i=1,....m
A =0
Vfo(a*) + 7, NV fi(a*) + ATur = 0 (11.2)
Affi(e®) = 0, i=1,....m
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Our goal is to approximately formulate the inequality constrained problem (11.1)
as an equality constrained problem to which Newton’s method can be applied.
Our first step is to rewrite the problem (11.1), making the inequality constraints
implicit in the objective:

minimize  fo(z) + >0 I_(fi(x))

subject to  Ax = b. (11.3)

where /_ : R — R is the indicator function for the nonpositive reals.

0 u<0
[ (u) = { o0 U ; 0.
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The basic idea of the barrier method is to approximate the indicator function 1_
by the function

I_(u) = —(1/t)log(—u). dom/_ = -R._.

where t > 0 is a_parameter that sets the accuracy of the approximation. Like
I_, the function /_ is convex and nondecreasing, and (by our convention) takes
on the value oo for v > 0. Unlike /_. however. T_ is differentiable and closed:
it increases to oo as u increases to 0. Figure 11.1 shows the function /_, and

the approximation /_, for several values of t. As t increases, the approximation
becomes more accurate.
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Figure 11.1 The dashed lines show the function /_(u), and the solid curves

show I_(u) = —(1/t)log(—u), for t = 0.5,

the best approximation.

1. 2. The curve for t = 2 gives



Department of Computer

AMITY Science and Engineering

UNIVERSITY

Substituting T_for I_in (11.3) gives the approximation

minimize  fo(z) + Yo, —(1/t) log(—fi(z)) (11.4)

subject to  Ax = b.

The objective here is convex, since —(1/t)log(—wu) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

d(x) ==Y log(—fi(x)). (11.5)
1=1
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with domo¢ ={z e R" | fi(x) <0, i =1,...,m}, is called the logarithmic barrier

or log barrier for the problem (11.1). Its domain is the set of points that satisfy
the inequality constraints of (11.1) strictly. No matter what value the positive
parameter t has, the logarithmic barrier grows without bound if f;(z) — 0, for
any 1.

On the other hand, when the parameter t is large, the function fo + (1/t)o is
difficult to minimize by Newton's method, since its Hessian varies rapidly near the
boundary of the feasible set. We will see that this problem can be circumvented
by solving a sequence of problems of the form (11.4), increasing the parameter ¢
(and therefore the accuracy of the approximation) at each step, and starting each
Newton minimization at the solution of the problem for the previous value of .
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For future reference, we note that the gradient and Hessian of the logarithmic
barrier function ¢ are given by

Volr) = 3 ——Viilx),

1
—fi(x)

Vi(z) = > ! Vfi(g:)Vfi(x)TnLZ V? fi(x)
' 1=1

fi(x)?
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We now consider in more detail the minimization problem (11.4). It will simplify
notation later on if we multiply the objective by ¢, and consider the equivalent
problem

minimize  tfo(x) + o(x)

subject to  Ax =0, (11.6)

which has the same minimizers. We assume for now that the problem (11.6) can
be solved via Newton’s method, and, in particular, that it has a unique solution
for each t > 0. (We will discuss this assumption in more detail in §11.3.3.)

For t > 0 we define x*(t) as the solution of (11.6). The central path associated
with problem (11.1) is defined as the set of points z*(t), t > 0, which we call
the central points. Points on the central path are characterized by the following
necessary and sufficient conditions: x*(t) is strictly feasible, i.e., satisfies
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Ax*(t) = b, fi(z*(t)) <0, i=1,....m,
and there exists a r € R? such that

0 = tVfolx*(t)) +Vo(z*(t)) + AlD

Vii(z*(t)) + AlD (11.7)

* . 1
= tVfo(z™(t)) + ; — fi(xz*(1))

holds.
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From (11.7) we can derive an important property of the central path: Every central
point yields a dual feasible point, and hence a lower bound on the optimal value
p*. More specifically, define
1
A5 (t) = — i =1,.... m. v (t) = v/t. 11.10)

We claim that the pair A*(t), v*(t) is dual feasible.

First, it is clear that A\*(¢) = 0 because f;(z*(t)) < 0, i = 1,....m. By
expressing the optimality conditions (11.7) as

V fo(x +ZA* W fi(z* (1)) + ATv*(t) = 0.
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we see that z*(1) minimizes the Lagrangian
L(I? )‘r 'U) — fD(‘r) + Z A‘tft(‘r) + "’;T(“’ilr' o b)

for A = A*(t) and v = v*(t), which means that A\*(¢), »*(¢) is a dual feasible pair.
Therefore the dual function g(A*(t),r*(t)) is finite, and

g (0,05 (1) = fola*(1)) + D M) fila* () +v* (1) (Ax* (1) — b)
1=1
= folx™(t)) —m/t.
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In particular, the duality gap associated with #*(¢) and the dual feasible pair A\*(t).
v*(t) is simply m/t. As an important consequence, we have

fo(x™(1)) —p* < m/t,

i.e., x*(t) is no more than m/t-suboptimal. This confirms the intuitive idea that
r*(t) converges to an optimal point as t — oc.
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We can also interpret the central path conditions (11.7) as a continuous deformation
of the KK'T' optimality conditions (11.2). A point z is equal to x*(¢) if and only if
there exists A, v such that

Ax = b, fi(rfi
Vfo(z) + Z:il NV fi(z) + ATy
—Aifi(z)

The only difference between the KK'T conditions (11.2) and the centrality condi-
tions (11.11) is that the complementarity condition —A\; f;(z) = 0 is replaced by
the condition —A; f;(x) = 1/t. In particular, for large ¢, 2*(¢) and the associated
dual point A\*(%), v*(t) ‘almost’ satisfy the KK'T optimality conditions for (11.1).

Y IA

(11.11)
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* Constrained and unconstrained problem
* Understanding the geometry of projection

* PGD is a special case of proximal gradient
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For unconstrained minimization problem

min f(x).
min f(x),

any x in R"™ can be a solution.

For constrained minimization problem with a given set Q C R"

min f(x).

xeQ

not any x can be a solution, the solution has to be inside the set Q
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An example of constrained minimization problem:

min ||Ax — b3 s.t. ||x|2 <1
xcR"

can be expressed as

min [|Ax — bl[5.
Ix[[2<1
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Gradient Descent (GD) is a standard (easy and simple) way to solve
unconstrained optimization problem.

Starting from an initial point x5 € R™, GD iterates the following
equation until a stopping condition is met:

X411 = X — o V[ (Xg),

where V f is the gradient of f, the parameter & > 0 is the step size,
and k is the iteration counter.
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Question: how about constrained problem? Is it possible to tune GD

to fit constrained problem?
Answer: yes, and the key is projection.

Remark: If f is not differentiable, we can replace gradient by subgradient, and we get the
so-called subgradient method.
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Projected Gradient Descent (PGD) is a standard (easy and simple)
way to solve constrained optimization problem.

Consider a constraint set Q C R"”, starting from a initial point
xg € Q, PGD iterates the following equation until a stopping
condition is met:

X1 = Po (X;; — Ct'ka(X;;)).

Po( .) is the projection operator, and itself is also an optimization

problem:

.1 ‘
Po(x0) = arg min S [|x — xol|3.

l.e. given a point Xg, Po try to find a point x € Q which is “closest”
to Xop.
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Po(.) is a function from R to R, and itself is an optimization
problem:
.1 :
Po(x0) = arg min —[|x — x¢||3.

xcQ 5

PGD is an “economic” algorithm if the problem is easy to solve.
This is not true for general Q and there are lots of constraint sets

that are very difficult to project onto.

If Q is a convex set, the optimization problem has a unique solution.

If Q is nonconvex, the solution to Po(xp) may not be unique: it gives
more than one solution.
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GD

1. Pick an initial point x5 € R"

2. Loop until stopping condition is met:
2.1 Descent direction: pick the descent direction as —V f(xx)
2.2 Stepsize: pick a step size ay
2.3 Update: xp11 = %Xk — arV[f(Xk)

PGD
1. Pick an initial point xo € Q
2. Loop until stopping condition is met:
2.1 Descent direction: pick the descent direction as —V f(xy)
2.2 Stepsize: pick a step size a
2.3 Update: yri1 =xr — arVf(xk)

ST NN | 2
2.4 Projection: Xpiq1 = Ellg,gl@lll 511X — Yr41]l3
X
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PGD has one more step: the projection.

The idea of PGD is simple: if the point x;. — o,V f(Xx}) after the
gradient update is leaving the set Q, project it back.
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Consider a convex set @ and a point Xy € Q.

As x € Q, the closest point to X in Q will be x( itself.
The distance between a point to itself is zero.

Mathematically: 1[|x — x¢[|2 = 0 gives x = x,.
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Now consider a convex set O and a point xg € Q: outside Q.

The circles are Lo norm ball centered at xgo with different radius.

Points on these circles are equidistant to xo (with different Lo
distance on different circles).

Note that some points on the blue circle are inside Q.
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The point inside Q which is closest to x( is the point where the Lo
norm ball “touches” O.
In this example, the blue point y is the solution to

L 1 ‘
Po(x0) = argmin —||x — xo|3.
xeQ 2
f,f h\\
'y Y
’ \
! A
/ \
g \
I !
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In fact, it can be proved that, such point is always located on the
boundary of O for xg ¢ Q. That is, mathematically,

argmin z||x — xo||3 € bdQ if x, ¢ Q.
XeQ

Note that the projection is orthogonal: the blue point y is always on a
that is tangent to the norm ball and Q.



Department of Computer

AMITY Science and Engineering

UNIVERSITY




Department of Computer

AMITY Science and Engineering

UNIVERSITY

The indicator function, denoted as 72(x), of a set Q is defined as
follows: if x € Q, then i(x) = 0; if x € Q, then i(x) = co.

With the indicator function, constrained problem has two equivalent
expressions

;néigf(x) = nicinf(x) + 2(x).

Proximal gradient is a method to solve the optimization problem of a
sum of differentiable and a non-differentiable function:

minf(x) + g(x),
x
where g is a non-differentiable function.

PGD is in fact the special case of proximal gradient where ¢g(x) is the
indicator function of the constrain set.
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The underlying problem -

_———————e————————a
o Classification.

- Linearly separable
Nonlinearly separable
- Non-separable linear boundary

- Non-separable nonlinear boundary
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-
o SVM: Maximum Margin Classifier

0 Margin: Perpendicular distance to the closest point x,
in dataset from the line y(x)=0

o Findsw & b to maximize the margin.
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Hard Margin SVM

0 Training data: (x,.2,); x,€R"; 1, e{-L1}

0 Feature Mapping: ¢:x — R*

0 Value: y(xn)=w‘f¢(xn)+b; weR:beR

O Class-1: y(x)=1
o Class-2: y(x)<-1

I

Theoretical reason behind choosing the numbers

o Decision Boundary: y(x)=0
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Distance
e —

0 Distance of a point X, from y(x)=0 :

| };(xn)l - rny(xn) - rﬂ(wr¢(x")+b)
wll, — [Twll, [l

dist(x,) =

0 To maximize the margin:

arg max [ 1 min[7, (W' @#(x,)+ b)]]

b U wll,
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0 If we set w— kwand b — kb then the distance is
unchanged.

0 Exploiting this fact, we set the closest point as:
t (W (x )+b)=1

0 For all other points: ¢ (w'd(x )+b)>1
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Support Vector Machine

0 For a separable (in feature space) data set:
1 e

minimize — || w |[;
w.b 2

subject to -
(W B(x,)+b)>1

—— Quadratic Programming Problem

Primal Form of SYM
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Soft Margin SVM

0 When the classes are overlapping or when we have
no clue about the dataset.

0 Relax the constraint with slack variable:

LW P(x,)+b)21-¢, ;& 20
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Soft Margin SYM

0 SVM with relaxed constraints allows some
misclassifications.

N
0 Convex Quadratic Program |minimize lll wl +a) &
w.,b 3 — ;

subject to -

t,(w d(x,)+b)=1-¢,
.2l Jori=L... N
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Primal Form: When to use ?

o If the dimensionality is very low.

0 Easy to visualize what kind of features are
required.

o If it’s evident that the data set is linearly separable
in the feature space defined by ¢(x)
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Dual Problem: Usefulness -

o0 When we have no clue about the features or
degree of the polynomial.

0 If the dimension is large (say 10000 ), it’s not possible
to visualize the data.

0 Better is to use Kernel Trick, which is what dual
formulation is about.
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Lagrangian Formulation:
e ]

0 Lagrange Multiplier: 4,7
- Hard Margin:

Lo, ) = 31| WIE =3 A,00474x) +5)=D
- Soft Margin: :

L(w,b,A,7) = % w2 +3 & - 2,6, g(x,) +b)-1+£)- 3 5.&,

n=1
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Apply the KKT Conditions

0 Gradient w.r.t W and » should vanish.
Hard Margin

N
wW.I.tw :%x 2w — Zlftfé(xf) =0
=1

w= i AtP(x,)

wrth: ‘iﬂf*} =0= i}!ﬁti =0
=%

=i
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o Substituting the value of w in the primal problem:

N N N
L(A) = Z A - 0.52 Z At At <P(x,),d(x,)>

n=l n=1 m=1

o0 Reformulating the objective: (k is a mercer kernel)

L(i) = i ﬂ’n - Osi i ﬂ.ﬂt"lmtmk(xn > X )
n=1

n=1 m=1
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Hard Margin Dual SVM

0 Form a vector: B=(4....5,): where components S, =41,

0 The optimization problem is
N
maximize » A4, —0.58"Kp
n=1

subjectto: A >0
N

> ,=0

i=1
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KKT Conditions

0 Optimal variable will satisfy following conditions
feasiblity: 7, (w'@(x,)+b)—1=0
Lagrange multiplier: 4 =0 .
Complementary Slackness: 4 (7, y(x,)—1)=0
N
y(x)=> At k(x,x,)+b
n=1

o Solution:

0 Where b is derived using the complementary slackness
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0 By complementary slackness:

if 2 >0 —> active constraint:for such point: 7 y(x )=1
(support vector)

if A =0 — inactive constraint , 7,)(x,) >1 and will not
play any role in decision making.

Such data points can be discarded (sparse solution)
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Kriging, Isotonic regression

Department of Computer
Science and Engineering

Applied Probability and
Statistics

Module-1, Lecture-16

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP
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» Consider the case of estimating at some unsampled location:

X

» How would you do this given data, z(u,), z(u-), and z(u;)?

« MNote: z is the variable of interest (e.g. porosity etc.) and u;is the data
locations.
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» Consider the case of estimating at some unsampled location:

Z(u,) is the data values
z'(ugy) is an estimate

A, is the data weights

m, is the global mean

X
» How would you do this given data, z(u, ), z(u.), and z(u;)?

n | n . =
) Unbiasedness
z'(up) = Z Agz(ug) +| 1 - Z Ay |M;| constraint
a=1 a=1 ' Weights sum to 1.0.
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« Consider the case of estimating at some unsampled location:

.

- 4
« How would you do this given data, z(u,), z(u,), and z(u,)?

In the case where
the mean is non-stationary.

a
2 (W) = my(Ug) = ) Ag(2(ug) — m(uy)
a=1

Giveny=z—m, y (up) = Xh_; 4, y(uy) Simplified with residual, y.
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« Consider the case of estimating at some unsampled location:

y.h.

e
L

X

» Linear weighted, sound good. How do we get the weights? 4, a=1,..,n

n
y (ug) = Z A.y(u,) Simplified with residual, y.

a=1
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Consider the case of estimating at some unsampled location:

y.ﬂ

X

Linear weighted, sound good. How do we get the weights? 4, a=1,..,n

R | Equal weight
Equal weighted / average? 4« = /n average of data

What's wrong with that?
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Consider the case of estimating at some unsampled location:

yll.

X
Inverse distance to power

» How do we get the weights? 4, a=1,..,n standardized so weights
1 sum to 1.0.
" i dist(u ,u, )P
Inverse distance? i = (ug, ug) s 2
a=1"a

What's wrong with that?
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Consider the case of estimating at some unsampled location:

F.Il.

X

« How do we get the weights? 4, a=1,..,n

« |t would be great to use weight that account for closeness (spatial correlation
> distance alone), redundancy (once again with spatial correlation).

+ How can we do that?
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+« Consider a linear estimator:

rw=Y 4 ¥()

where Y(u;) are the residual data (data values minus the mean) and
Y*(u;) is the estimate (add the mean back in when we are finished)

Stationary Mean, Variogram
E{Y} = 0

E{[y'(”)_y(u)]:}= 2y(h) = E | [Y(u) - Y(u+ h]]li
_E {[y ] }_ 2 E{Y' @) Y@} + E{[Y @] |
=T AA EY @) Y@} =2 Y AE @Y @)} +CO)
=ZLIZ;&%C(HT,HJ)—E Z:;l AC(u,u,)+C(0)

redundancy closeness variance

C(u;, u;) — covariance between data i and j, C(u;, u)covariance between data and
unknown location and €(0) is the variance.

« The estimation variance is defined as:
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+ Optimal weights 7 ;i =1,..,n» may be determined by taking partial
derivatives of the error variance w.r.t. the weights

n
d
[ . : = Zﬂjc(“h“f) —2-C(u,uy),i=1,..,n
04, —
j:

and setting them to zero

n
Z.ﬂle(“i,u!‘) = - C(u,ui),i =1, ..,n
j=1

« This system of n equations with n unknown weights is the simple kriging
(SK) system
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- Estimation approach that relies on linear weights that account for spatial
continuity, data closeness and redundancy.

« Weights are unbiased and minimize the estimation variance.

There are three equations to determine the
three weights:

A1 - C(ug,uy) + 45 - C(uy,u3) + A3 - C(uy, uz) = C(ug, uy)
.3.1 : C(“E, ul) + j.z ' C(“E, “2) + 113 . E(“E, U3) = C(“D,UE}
A1+ C(uz,uy) + 45 - C(uy,uz) + 43 - C(uy, u3) = C(ug,uy)

In matrix notation: Recall that Ch)=C(O0)=r(®)
y
C(uy,uy) C(ug,uy) C(ug,ugz)||A, C(u,y,uy)
C(uyz,uy) C(uz,uy) C(uy,uz)||dz| = |C(u,,uy)
X

C(uz,uy) C(uzuy) C(uz,uz)][4s C(u,, u3)
redundancy closeness
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+ Solution exists and is unique of matrix [C(r_,_,r})] is positive definite
+ Kriging estimator is unbiased: E*-HFZ -7 H =0

« Minimum error variance estimator (just try to pick weights, you won't bet it)
« Best Linear Unbiased Estimator

» Provides a measure of the estimation (or kriging) variance (uncertainty in the
estimate):

of(w) = C(0) ~ Y AgClu-uy) o~ 0.0]
® a=1
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+ Exact interpolator: at data location

» Kiriging variance can be calculated before getting the sample
information, homoscedastic!

« Kiriging takes into account:
— distance of the information: ¢ (-4,
— configuration of the data: C(u,.u;)
— structural continuity of the variable being considered: C(h)

« The smoothing effect of kriging can be forecast — we will return to this
Evith simulation.

» Kriging theory is part of the probabilistic theory of projectors: orthogonal
projection onto space of linear combinations of the n data (Hilbert
space)
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Recall: linear regression fits the function

m
Yy = Z boxq + by
a=1

* Xy,.., %, predictor features ) B b B
* yresponse features
e by, by, ..., b, parameters

Under the constraint:

n m 2
RSS = Z (yi - Z box, + bu)
j=1

a=1

minimize residual sum of squares (RSS) over the training data.
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General Comments:

* A single linear model is quite inflexible
* Could we break up the problem into many linear model segments?

Porosity from Grainsize

Isotonic Constraints / Thresholds

Porosity (%)
i
[ =)

-
=
&4
8

&8

100
Grain Size (mm)

» We provide a set of thresholds in the predictor feature, x,, x,,... x;
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* Piece-wise linear model

* Monotonic constraint
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General Comments:

» The model is now parameterized by a set of predictions at the
thresholds, f(x,), f(x2),... f(xk), k =1, ..., K thresholds

Porasity from Grainsize

Porosity (%)

e rain
e Iest

0 20 0 &0 80 100
Grain Size (mm)

* The estimates between the thresholds are linear interpolations

fxo) = f(xp=1) + (x0 — xk-ﬂﬂx:s:ifi'l), where x,_1< xy < X
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General Comments:
» We are also able to impose a monotonic constraint on the solution.

f(x1) < f(x2) <+ = f (%)

» The solution slope is always nonnegative

Porosity from Grainsize

Porosity (%)
B
[ ¥4
[ =1

s frain
L] s lest

Grain Size (mm)
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General Comments:
» We have the following loss function based on our piece-wise function.

: Under constraint:
min (Z(}’i = ?5)2)
=1 f(x1) = f(xz) £+ = f(xk)

Paorosity from Grainsize

Porosity (%)

s frain
™ L] tEst

D iﬂ 4::' E;J HTJ 100
SD'VEd thrﬂugh iterative mEtthS Grain Size (mm)



Department of Computer

AMITY Science and Engineering

UNIVERSITY

The Isotonic Regression Model:

» The result is quite a flexible model.

Porosity from Grainsize

2.5 1

Porosity (%)

L] rain

50 4 e Iest

0 20 0 60 80 100
Grain Size (mm)
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The Isotonic Regression Issue:

* As the number of isotonic constraints, K, and the number of predictor
features increases, m, the number of parameters to train:

p — Klﬂ

« Strong risk of overfit for large, K, solution is to use a small K value
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« Test and train with porosity and grainsize data
* Monotonic increase is reasonable and may be nonlinear
* Assume K =10

Porosity from Grainsize

Porosity (%)
|
(=]
[ ]
L ]
L ]

K
®

e frain
s0{ * e

Grain Size (mm)
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The Isotonic Regression Model:

» The result is quite a flexible model.

Isotonic Regression Porosity from Grainsize with Training Data

— model ———t ¥
254 e ftrain : o
e Iest f-f
L]

20.0 s predicted test / .

115 - =
= - . L __,._,J"’ﬂ
E _,_:--""_ = - :
z 150 - — #
g f{,/‘"
[=]
a 125 _f'

" . : - =

10.0 /

75 4 e

so{ °

0 20 40 60 80 100

Grain Size (mm)
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The Hyperparameter, K

» Determines the degree of fit, overfit vs. underfit.

storer Regrestes Poreasty brom Grasoise with Trasses Dats

| * pesoed e

X L L
G Lo (e

bsoton Regression Porostly from Grasvize with Trasning Data
-
e
wn
[
e nes
&

Variance explained
40%

Variance explained
27%
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* | east absolute shrinkage and selection operator (LASSO) regression is a
form of supervised statistical learning (i.e., machine learning) aimed at
improving prediction

* LASSO regression effectively selects only the most important predictor
variables for predicting an outcome by shrinking the regression coefficients

associated with the least important predictor variables to zero
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* General

Department of Computer
Science and Engineering

reasons for applying LASSO regression:

v'To avoid overfitting a model to the data on which it was estimated (i.e.,

trained), which can be problematic with conventional regression techniques

(e.g., linear, logistic), especially when there is a large number of predictor

variab

v To se

much

€S

ect the most important predictor variables (i.e., features) from a

arger number of predictor variables
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* LASSO regression is a regularization method (specifically an L1
regularization method) and is related to other regularization methods like

ridge regression and elastic net

* The purpose of regularization is to reduce variance of parameter estimates
(i.e., regression coefficients), even if it comes at the expense of some
additional bias; ultimately, this means finding the optimal level of model

complexity
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* Technically, LASSO regression involves two tuning parameters called alpha

and lambda, but because alpha=1 for LASSO regression.
* We will focus on lambda because it can be varied during model training

* The lambda tuning parameter places a constraint on the maximum absolute
value of the regression coefficients in the model and adds a penalty to non-

zero regression coefficients
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* Effects of different lambda values:

v"When lambda is zero, the results will approximate a conventional (e.g.,
ordinary least squares [OLS] regression) model, and no regression
coefficients associated with predictor variables shrink to zero {i.e., be

eliminated)

v"When lambda is large, regression coefficients with smaller absolute values

shrink toward zero

v"When lambda becomes too large, all regression coefficients shrink to zero
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v'As lambda gets smaller, variance grows larger

v'As lambda gets larger, bias grows larger

* Traditionally, LASSO regression has been applied to linear regression

models

* LASSO regression can, however, also be applied to other families of models,

such as generalized linear models which include logistic regression models
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Recall: linear regression fits the function

* Xy,..,X, predictor features
» 1y response features
e by, by, ..., b, parameters

Under the constraint:

n m 2
RSS = Z (yE - Z b x, + b.,)
i=1 a=1

minimize residual sum of squares (RSS) over the training data.
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With ridge regression we add a new term to the optimization:

n m 2 m
min Z (}"1 = Z b x. = bn) + A Z bﬂ-z
a=1

i=1 a=1

RSS Shrinkage
Penalty

Now we have the standard residual sum squares and the shrinkage
penalty

This is known as a shrinkage method
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With lasso regression we add a new term to the optimization:

n m 2 m
min Z (yi _ Z ba:ra-l—bﬂ) +2 Z|ﬂ;ﬂ| Lasso Cost /
a=1

i=1 a=1 Loss function
RSS Shrinkage
Penalty
Compare this with ridge regression.
n m 2 m _
: o 5 v db ] i lz p. 2 Ridge Cost/
e Z (y : Z atd “) “ Loss function
=1 a=1 a=1
RSS Shrinkage
Penalty

The difference is a L! vs L* norm for the shrinkage penalty term.
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Linear space £(X1, X2)
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*Where x,, x5, ..., g, ..., X, are the p feature or predictor or covariates
® fo, f14, ..., il are the prediction vector

*¥1,¥2, -, Yp are projection

*u, is unit vector along bisector

*y = P1xy + Baxy + 0+ By

*(xj,r) is a dot product between x; and residual r
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1.

Standardize features xj to mean = 0 and variance = 1

2. Getresidual r = y — y where coefficients £, 5, i fp =0
3.
4

. Incrementally update coefficients f; from zero to least squares coefficient (x;, r)

Find a feature X; "most correlated" with residual r

until another feature x; has the same correlation as x; with residual .

Now, move (B}, Bi) in the direction defined by their joint least square coefficients

of current residual on (x;x), until some another competitor x; has same

correlation with the residual .

. Repeat for all p features

. After p steps, we arrive at full least squares solution
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covariates X1 X9
prediction vector /IO lj;l
projection y_l y_2
Begln unit vector along bisector u2

Standardize X3, X9 to mean of zero. CABS aaliiala

fio is prediction based solely on an intercept. /JO — ()

X2

o X1
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Pick a variable "most correlated" to r = X4

)72 . }Io making a smaller angle withXy than X2
Y2 — Lo has greater correlation with X3 than X2

o
o

covariates X1 X9
prediction vector ﬂ(} /jl

projection )71 y_2
unit vector along bisector U2

LARS estimate:

fio =0
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Augment f1g in the direction of X1 to 111 = g + Y1X1

Department of Computer
Science and Engineering

~ Stagewise path E
o

X2

LSE of X,

M1

-

X1

y = Pi1X1 + BoXo

covariates X1 X9

prediction vector IZ.O /jl

projection )71 y_2

unit vector along bisector U2

LARS estimate:
~
fio = 0

P

Lo + Y1X1
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covariates X1 X9

prediction vector /JTO /Il
Vo — [L IS equally correlated with X7 and X2 projection )71 y-z

unit vector along bisector U2

y = [Bi1X1 + BaXo

................... fo = 0
\p. /Jl = /IO .3 f)?lxl

Proceed to y2

X2
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covariates X1 X9
prediction vector H?U /j:l
Choose intermediate value of 1 that makes y2 — lfl projection )71 y‘2
equally correlated with X7 and Xgo unit vector along bisector U2
)72 — ﬁl bisects the angle between X1 and x, T
P
MO — 0




Department of Computer

AMITY Science and Engineering

UNIVERSITY

covariates X1 X9
prediction vector lfo /—II

projection )71 y_2

unit vector along bisector 1_12

Next, LARS estimate is #2 = [17 + YoUz2

with ’}’2 chosen to make ,ug — )fz LARS T

| M1 = o + 11X
/ fl2 = [i1 + Y2u2

Ho L X1
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