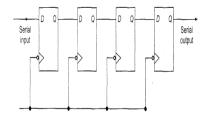
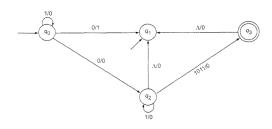
Module 1: Assignment 1

January 4, 2022

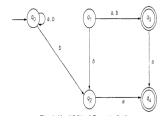
- 1. What are the possible binary operations on sets? Explain with the help of suitable examples.
- 2. Obtain truth table for:
 - $\bullet \ \alpha = (P \lor Q) \land (P \implies Q) \land (Q \implies P)$
 - $\bullet \ \alpha = (P \vee Q) \implies ((P \vee R) \implies (R \vee Q))$
- 3. Explain the following for logical identities with the help of suitable examples:
 - Absorption Laws
 - De-morgan laws
 - Double Negation laws
- 4. What do you understand by the term directed graph? Explain using suitable example considering terms such as end vertices, predecessor, successor, degree, path, connected graph and circuit.
- 5. Consider a 4-bit serial shift register as a finite state machine.





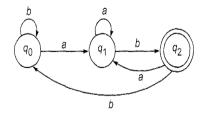
State	Input	
	a	b
$\rightarrow q_0$	q_0, q_1	q_0
q_1	q_2	q_1
q_2	q_3	q_3
$_{\odot}$		q_2

- 6. Consider the given transition system: Determine the initial states, final states and acceptability of 101011, 111010.
- 7. Prove that for any transition function δ and for any two input string 'x' and 'y' $\delta(q, xy) = \delta(\delta(q, x), y)$
- 8. Construct a deterministic finite automaton equivalent to $M=(\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\})$ where δ is as under:
- 9. Construct a DFA equivalent to NDFA 'M' whose transition diagram is given as:



- 10. Construct a DFA equivalent to NDFA with initial state q_0 whose transition table is defined as
- 11. Construct a DFA accepting all strings over $\{a,b\}$ ending in ab.
- $12. \ \, \text{Construct}$ a DFA equivalent to NDFA for:

State	a	b
q ₀	91, 93	q ₂ , q ₃
q_1	91	q_3
q_2	q_3	q_2
(P3)	-	-



13. M=($\{q_1, q_2, q_3\}, \{0,1\}, \delta, q_1, \{q_3\}$) is a NDFA where δ is given by:

$$\delta(q_1,0) = \{q_2,q_3\}$$

$$\delta(q_1,1) = \{q_1\}$$

$$\delta(q_2,0) = \{q_1,q_2\}$$

$$\delta(q_2,1)=\phi$$

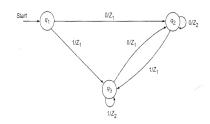
$$\delta(q_3, 0) = \{q_2\}$$

$$\delta(q_3, 1) = \{q_1, q_2\}$$

Construct equivalent DFA.

- 14. Convert the given mealy machine into equivalent moore machine
- 15. Construct minimum state automaton equivalent to given automata M:
- 16. Construct a grammar G so that L(G) = $\{a^nba^m \mid n, m \geq 1\}$
- 17. If G is S \rightarrow aS |a, then show that L(G)= $\{a\}^+$

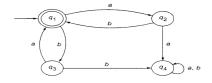
State	Input		
	0	1	\wedge
$\rightarrow q_0$	q_0, q_3	q_0, q_1	
q_1	q_2		
q_2	q_2	q_2	q_4
q_3	q_4		
q_4	q_4	q_4	



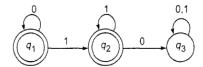
State Σ a	b	
$\rightarrow q_0$	q_0	q_3
q_1	q_2	q_5
q_2	q_3	q_4
q_3	q_0	q_5
q_4	q_0	q_6
$\underline{}$	q_1	q_4
$\overline{q_6}$	q_1	q_3

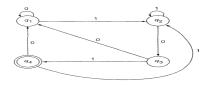
- 18. If the grammar G is given by the productions S \rightarrow aSa |bSb |aa |bb | $\land,$ show that:
 - L(G) has no strings of odd length
 - • Any string in L(G) is of length 2n, n ≥ 0
 - the number of strings of length 2n is 2^n
- 19. Find the highest type number which can be applied to the following productions:
 - $S \rightarrow Aa, A \rightarrow c \mid Ba, B \rightarrow abc$
 - $S \to ASB \mid d, A \to aA$
 - $S \rightarrow aS | ab$
- 20. Differentiate between Recursive Set and Recursively Enumerable Set
- 21. Prove that Context-sensitive language is recursive.
- 22. Prove that there exists a recursive set which is not a contxt-sensitive language over $\{0,1\}$.
- 23. Let G=({A,B,S},{0,1},P.S) where P consists of S \rightarrow 0AB, A0 \rightarrow S0B, A1 \rightarrow SB1, B \rightarrow SA, B \rightarrow 01. Show that L(G)= ϕ .

- 24. Find the language generated by grammar S \rightarrow AB, A \rightarrow A1 |0, B \rightarrow 2B |3. Can the above language be generated by a grammar of higher type?
- 25. Construct a grammar which generates all even integer upto 998.
- 26. Construct CFG to generate the following:
 - $\{0^m1^n | m\neq n, m, n \geq 1\}$
 - $\{a^lb^mc^n|\text{one of l,m,n equals 1 and remaining tqo are equal}\}$
 - $\{a^lb^mc^n \mid l+m=n\}$
 - The set of all strings over $\{0,1\}$ containing twice as many 0's and 1's
- 27. Show that $G_1=(\{S\},\{a,b\},P_1,S)$ where $P_1=\{S\to aSb \mid ab\}$ is equivalent to $G_2=(\{S,A,B,C\},\{a,b\},P_2,S)$, where P_2 consists of $S\to AC$, $C\to SB$, $S\to AB$, $A\to a,B\to b$
- 28. What are the applications of different grammar types?
- 29. Prove that the finite automaton whose transition diagram below accepts the set of all strings over alphabet {a,b} with an equal number of a's and b's, such that each prefix has atmost has atmost one more a than the b's and atmost one more b than the a's



30. Describe in English the set accepted by finite automaton whose transition diagram is as under:





State/ Σ	0	1
$\rightarrow q_0$	(q_0,R)	(q_1, R)
q_1	(q_1,R)	(q_2, L)
q_2	(q_0,R)	(q_2, L)

- 31. Construct a regular expression corresponding to the state diagram described as under:
- 32. Give R.E. for representing the set L of strings in which every 0 is immediately followed by atleast two 1's. Prove that R.E. $r = \wedge + 1^*(011)^*(1^*(011)^*)^*$ also describes the same set of strings.
- 33. Prove $(1+00^*1) + (1+00^*1)(0+10^*1)^*(0+10^*1) = 0^*1(0+10^*1)^*$
- 34. Determine the acceptability of 101001 for the following: where $Q = \{q_0, q_1, q_2\}$, $s = q_0, t = q_1, r = q_2$
- 35. Construct DFA with reduced states equivalent to R.E. (10+(0+11)0*1).
- 36. Construct transition system equivalent to R.E.
 - $\bullet \ (ab + c^*)^*b$
 - $\bullet \ a + bb + bab^*a$
 - $(a+b)^*abb$
- 37. Prove that $(a^*ab + ba)^*a^* = (a + ab + ba)^*$
- 38. Construct a finite automata accepting all strings over $\{0,1\}$ ending in 010 or 0010.
- 39. Construct a regular grammar which can generate the set of all strings starting with a letter (A to Z) followed by a string of letters or digits (0 to 9).

- 40. Show that L= $\{0^i1^i | i \geq 1\}$ is not regular.
- 41. Show that L= {ww $|w \in \{a, b\}^*$ } is not regular.
- 42. Is L = $\{a^{2n} \mid n \ge 1\}$ regular?