Module 5: Assignment 1

April 13, 2022

- 1. Describe the initial functions over \mathbb{N} .
- 2. Describe the initial functions over $\Sigma = \{a, b\}$.
- 3. Define n! by recursion.
- 4. Show that the function $f_l(x,y) = x + y$ is primitive recursive.
- 5. The function $f_2(x,y) = x * y$ is primitive recursive
- 6. Show that $f(x,y) = x^y$ is a primitive recursive function
- 7. Show that $f(x,y) = x^2y^4 + 7xy^3 + 4y^5$ is a primitive recursive.
- 8. Show that f(x) = x/2 is a partial recursive function over \mathbb{N} .
- 9. If $f(x_1, x_2)$ is primitive recursive, show that $g(x_1, x_2, x_3, x_4) = f(x_1, x_4)$ is primitive recursive.
- 10. If f(x,y) is primitive recursive, show that g(x,y)=f(4,y) is primitive recursive.
- 11. Show that the characteristic function of the set of all even numbers is recursive.
- 12. Prove that the characteristic function of the set of all odd integers is recursive.
- 13. Show that the function f(x,y) = x y is partial recursive.
- 14. State Church's Hypothesis about computability of a machine.