Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology
(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in
www.akyadav.in
+91 9911375598

July 24, 2019

Examples

- 1. Show that $an + b = O(n^2)$
- 2. Show that $\frac{1}{2}n^2 3n = \Theta(n^2)$
- 3. Show that $\frac{1}{2}n^2 3n = \Omega(n)$

Solutions I

1. Show that $an + b = O(n^2)$ we have to prove that $an + b \le cn^2$ for some positive constants c, n_0 and for all $n \ge n_0$.

$$an + b \le an + |b|$$
 for all $n \ge 1$
 $\le an + |b|n$ for all $n \ge 1$
 $= (a + |b|)n$
 $= cn$ where $c = a + |b|$
 $\le cn^2$
 $\Rightarrow an + b \le cn^2$ where $c = a + |b| > 0$ all $n \ge n_0 = 1$
 $\therefore an + b = O(n^2)$
 $\Rightarrow an + b < cn^2$ for all $c > 0$ all $n > n_0 = max(1, -b/a)$
 $\therefore an + b = o(n^2)$

Solutions II

2. Show that $\frac{1}{2}n^2 - 3n = \Theta(n^2)$ We have to prove that $c_1n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2n^2$ for some positive constants c_1, c_2, n_0 and for all $n \geq n_0$.

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

$$\Rightarrow c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2 \text{ after dividing } n^2$$

$$\Rightarrow 0 < c_1 \le \frac{1}{2} - \frac{3}{n}$$

$$\Rightarrow 0 < \frac{1}{2} - \frac{3}{n}$$

$$\Rightarrow \frac{3}{n} < \frac{1}{2}$$

Solutions III

$$\Rightarrow n > 6$$
Let $n = 7$

$$\Rightarrow 0 < c_1 \le \frac{1}{14}$$

Let
$$c_1 = \frac{1}{14}$$

Now
$$0 < \frac{1}{2} - \frac{3}{n} \le c_2$$

$$\Rightarrow 0 < \frac{1}{2} \le c_2 \text{ when } n = \infty$$

Let
$$c_2 = \frac{1}{2}$$

$$\Rightarrow 0 < \frac{1}{14}n^2 \le \frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2$$
 for all $n \ge n_0 = 7$ and any constant $0 < c_1 \le \frac{1}{14} \le \frac{1}{2} \le c_2$.

Solutions IV

3. Show that $\frac{1}{2}n^2 - 3n = \Omega(n)$ We have to prove that $cn \leq \frac{1}{2}n^2 - 3n$ for some positive constants c, n_0 and for all $n \geq n_0$.

Let
$$cn \le \frac{1}{2}n^2 - 3n$$

$$c \le \frac{1}{2}n - 3 \text{ after dividing } n \text{ both side}$$

$$\Rightarrow c \le \frac{1}{2}n + 3$$

$$\Rightarrow c \le \frac{1}{2}n + 3n \text{ for all } n > 0$$

$$\Rightarrow c \le \frac{7}{2}n$$

Solutions V

$$\Rightarrow \frac{7}{2} \leq \frac{7}{2}n \text{ for all } n \geq 1$$

$$\therefore c \leq \frac{7}{2}$$

Let
$$c = \frac{7}{2}$$

 $\Rightarrow \frac{7}{2}n \le \frac{1}{2}n^2 - 3n$ for all positive constants $c \le \frac{7}{2}$ and for all $n \ge n_0 = 1$.

Thank you

Please send your feedback or any queries to akyadav1@amity.edu, akyadav@akyadav.in or contact me on +91~9911375598

