
Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology

(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in

www.akyadav.in
+91 9911375598

August 20, 2019

Dr. A K Yadav Algorithms Design and Analysis 1/1



Complexity analysis I

Analyzing an algorithm means predicting the resources that the
algorithm requires. Resources may be memory, communication
bandwidth, computer hardware or CPU time. Our primary concern
is to measures the computational time required for the algorithm.
Running time:-The running time of an algorithm is the number of
primitive operations or steps executed on a particular input.
Why do we normally concentrate on finding only the worst-case
running time?

1. The worst-case running time of an algorithm gives us an
upper bound on the running time for any input. So it
guarantees that the algorithm will never slower than this.

2. In real applications, worst case normally occurs for example
searching a non existing data.

Dr. A K Yadav Algorithms Design and Analysis 2/1



Complexity analysis II

3. Best case is like an ideal case which guarantees that the
algorithm will never faster than stated. Based upon this we
can’t allocate the resources.

4. Average case normally perform as worst case because normally
we take average case as average of best and worst or best for
half size input and worst for other half size.

Dr. A K Yadav Algorithms Design and Analysis 3/1



Complexity analysis: Insertion sort I

Insertion-Sort(A,N) Cost Times
1. for j = 2 to N c1 n
2. key = A[j] c2 n-1
Insert A[j] in sorted A[1] to A[j − 1]
3. i = j − 1 c3 n-1
4. while i > 0 and A[i ] > key c4

∑n
j=2 tj

5. A[i + 1] = A[i ] c5
∑n

j=2(tj−1)
6. i = i − 1 c6

∑n
j=2(tj−1)

while-end
7. A[i + 1] = key c7 n-1
for-end

Dr. A K Yadav Algorithms Design and Analysis 4/1



Complexity analysis: Insertion sort II

T (n) = c1n + c2(n − 1) + c3(n − 1) + c4

n∑
j=2

tj + c5

n∑
j=2

(tj − 1)

+c6

n∑
j=2

(tj − 1) + c7(n − 1)

⇒ T (n) = an + b + c4

n∑
j=2

tj + c5

n∑
j=2

(tj − 1) + c6

n∑
j=2

(tj − 1)

Now consider different cases:

Dr. A K Yadav Algorithms Design and Analysis 5/1



Complexity analysis: Insertion sort III

1. Best Case: The algorithm performs best if key ≤ A[i ] for
every value of j in step 4.
Then it executes only once for each value of j and total of n-1
times.
Step 5 and 6 will not be execute at all.
This is the case when array is already sorted

T (n) = an + b = O(n)

2. Worst Case: The algorithm performs worst if key > A[i ] for
each value of j and stops only when i < 1 in step 4.
Then it will execute always j times for each value of
j = 2, 3, . . . , n

Dr. A K Yadav Algorithms Design and Analysis 6/1



Complexity analysis: Insertion sort IV

so
n∑

j=2
j = (n − 1)(2 + n)

2

and step 5 and 6 will execute

n∑
j=2

(j − 1) = (n − 1)n
2

This is the case when array is already sorted in reverse order

T (n) = an2 + bn + c = O(n2)

Dr. A K Yadav Algorithms Design and Analysis 7/1



Complexity analysis: Merge Sort I

MERGE-SORT(A, p, r)
1 if p < r

2 q = (p + r)/2
3 MERGE-SORT(A, p, q)
4 MERGE-SORT(A, q+1, r)
5 MERGE(A,p,q,r)

MERGE(A, p, q, r)
6 n1 = q − p + 1
7 n2 = r − q
8 Let L[1..n1] and R[1..n2] be new arrays
9 for i = 1 to n1

10 L[i ] = A[p + i − 1]
11 for j = 1 to n2

12 R[j] = A[q + j]
13 i = 1

Dr. A K Yadav Algorithms Design and Analysis 8/1



Complexity analysis: Merge Sort II

14 j = 1
15 for k = p to r

16 if L[i ] ≤ R[j]
17 A[k] = L[i ]
18 i = i + 1

19 else
20 A[k] = R[j]
21 j = j + 1

Dr. A K Yadav Algorithms Design and Analysis 9/1



Complexity analysis: Merge Sort III

Working of Merge

Analysis:

Dr. A K Yadav Algorithms Design and Analysis 10/1



Complexity analysis: Merge Sort IV
I First call of merge-sort will be MERGE-SORT(A, 1, n) for

input size n.
I q is half of n,q = n

2 in step 2.
I Every call of merge-sort divides the size in half and double the

sub-problems.
I So there will be only lg n calls of merge-sort and sum of size

of all sub-problems is n
I There is only one call for each merge-sort call
I So total calls of the merge will be lg n
I Step 6 to 8 will be executed lg n times
I Step 9 will be executed n1 lg n times
I Step 10 will be executed n1 lg n times
I Step 11 will be executed n2 lg n times
I Step 12 will be executed n2 lg n times

Dr. A K Yadav Algorithms Design and Analysis 11/1



Complexity analysis: Merge Sort V

I Total of Step 9 to 12 will be executed 2(n1 + n2) lg n times
I Step 13 & 14 will be executed lg n times
I For each call of lg n step 15 will be executed n lg n times
I Step 16 will be executed n lg n times
I Every time either step 17 & 18 or step 20 & 21 will be

executed and sum of these will be n lg n.
I After adding cost of all these step

T (n) = an lg n + bn + c = O(n lg n)

Dr. A K Yadav Algorithms Design and Analysis 12/1



Thank you

Please send your feedback or any queries to akyadav1@amity.edu,
akyadav@akyadav.in or contact me on +91 9911375598

Dr. A K Yadav Algorithms Design and Analysis 13/1


