
Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology

(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in

www.akyadav.in
+91 9911375598

October 16, 2019

Dr. A K Yadav Algorithms Design and Analysis 1/1

Huffman Codes I

I Huffman Codes is used for data compression.
I Data is a sequence of characters.
I Each character is given with their frequency
I Each character is encoded into a codeword using some

scheme.
I Suppose there are n characters in the set C .
I Each character c ∈ C have frequency freqc
I bit(c) is the number of bits required to code c character

whose frequency is freqc .
I Our aim is to design a encoding scheme so that we can

minimize the total length of codeword.

minimize
∑
c∈C

freqc × bit(c)

Dr. A K Yadav Algorithms Design and Analysis 2/1

Huffman Codes II

I We can use some standard fixed length formatting such as
ASCII

I In this case the the total space requirement will be
8×

∑
c∈C

freqc

I But we can save more space using non standard fixed length
formatting scheme for n characters.

I The length of the code will be dlg ne
I In this case the dlg ne number of bits are required to represent

each character and total bits will be dlg ne ×
∑
c∈C

freqc

I Huffman codes can be used even to save more space than
both of the above and this uses variable length encoding
scheme for each character.

I Huffman codes are prefix codes.

Dr. A K Yadav Algorithms Design and Analysis 3/1

Huffman Codes III

I Prefix Codes: Codes in which no codeword is a prefix of
some other codeword are called Prefix Codes.

I The benefits of Prefix codes are simplified decoding,
unambiguous encoding.

I But the disadvantages is that we can not start decoding in
between the encoded codeword into the original character.

I Huffman code uses full binary tree for encoding, in which
every non leaf node has two children

I All characters are used as leaf, so total leaf will be n
I There are n − 1 internal nodes as in full binary tree.
I Each left child is labelled as 0 and each right child is labelled

as 1.
I Label value from root to leaf will be the encoding for that leaf

character.

Dr. A K Yadav Algorithms Design and Analysis 4/1

Huffman Codes IV

I All characters are kept in min priority queue according to their
frequency that is least frequency character is at front of the
queue.

I Every time we sum the least two frequency of the first two
element of the queue and make one

I So after n− 1 operation we will be having only one element in
the min priority queue and that will be the root of the tree.

I Code length of the character c will be equal to the depth of
the c dT (c) in tree T. So

minimize B(T) =
∑
c∈C

freqc × dT (c)

Dr. A K Yadav Algorithms Design and Analysis 5/1

Huffman Coding algorithm

HUFFMAN(C)//C is the set of n characters
1. n = |C |
2. Q = C //Q is Min-priority Queue
3. for i = 1 to n − 1
4. allocate a new node z
5. z → left = EXTRACT −MIN(Q)
6. z → right = EXTRACT −MIN(Q)
7. freqz = freqz→left + freqz→right

8. INSERT (Q, z)
9. return EXTRACT −MIN(Q)

Line 2 will be require O(n lg n) time for building the min heap of n
items. For loop executes n − 1 times and each time it rebuild the
min heap in O(lg n) times. Total time complexity will be O(n lg n)

Dr. A K Yadav Algorithms Design and Analysis 6/1

Correctness of the Huffman algorithms I

If character x and y having the least frequency then they will be at
highest depth in the some optimal tree T for Huffman Code.
I Let character x and y having the least frequency freqx and

freqy respectively. Also suppose freqx ≤ freqy

I Suppose x and y are not at highest depth but a and b are at
the highest depth in the tree T .

I Let freqa ≤ freqb
I Since freqx , freqy are lowest frequency and freqa, freqb are any

arbitrary frequency. Also freqx ≤ freqy and freqa ≤ freqb. So
freqx ≤ freqy ≤ freqa ≤ freqb.

I if freqx = freqb then freqx = freqa = freqy = freqb and we
can change the position of the x and y with a and b and
hence proved.

Dr. A K Yadav Algorithms Design and Analysis 7/1

Correctness of the Huffman algorithms II

I So assume freqx 6= freqb and take tree T as shown in below
figure:

x

a b

y

Dr. A K Yadav Algorithms Design and Analysis 8/1

Correctness of the Huffman algorithms III

I Interchange the position of x with a in tree T and build tree
T ′ as shown in below figure:

a

x b

y

Dr. A K Yadav Algorithms Design and Analysis 9/1

Correctness of the Huffman algorithms IV

I Interchange the position of y with b in tree T ′ and build tree
T ′′ as shown in below figure:

a

x y

b

Dr. A K Yadav Algorithms Design and Analysis 10/1

Correctness of the Huffman algorithms V

I Find B(T)− B(T ′)

B(T)− B(T ′)

=
∑
c∈C

freqc × dT (c)−
∑
c∈C

freqc × dT ′ (c)

= freqx×dT (x)+freqa×dT (a)−freqx×dT ′ (x)−freqa×dT ′ (a)

= freqx×dT (x)+ freqa×dT (a)− freqx×dT (a)− freqa×dT (x)

= (freqa − freqx)(dT (a)− dT (x))

Now (freqa − freqx) ≥ 0 because freqx is the least frequency
and (dT (a)− dT (x)) ≥ 0 because a is at the highest depth.
So

(freqa − freqx)(dT (a)− dT (x)) ≥ 0

Dr. A K Yadav Algorithms Design and Analysis 11/1

Correctness of the Huffman algorithms VI

⇒ B(T)− B(T ′) ≥ 0

⇒ B(T) ≥ B(T ′)

But B(T) can not be greater then B(T ′) because B(T) is the
optimal value. So the only possibility is B(T) = B(T ′)
Same way we can prove B(T ′) = B(T ′′)
So B(T) = B(T ′) = B(T ′′)
So B(T ′′) is an optimal Huffman code where least frequency
characters x and y is at the highest depth.

Dr. A K Yadav Algorithms Design and Analysis 12/1

Thank you

Please send your feedback or any queries to akyadav1@amity.edu,
akyadav@akyadav.in or contact me on +91 9911375598

Dr. A K Yadav Algorithms Design and Analysis 13/1

