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* This module addresses the simulation of random draws X4, ..., X;, from a

target distribution f.

* The most frequent use of such draws is to perform Monte Carlo integration,
which is the statistical estimation of the value of an integral using evaluations
of an integrand at a set of points drawn randomly from a distribution with

support over the range of integration.

* Estimation of integrals via Monte Carlo simulation can be useful in a wide

variety of settings.
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° |n Bayesian analyses, posterior moments can be written in the form of an
integral but typically cannot be evaluated analytically. Posterior probabilities
can also be written as the expectation of an indicator function with respect to

the posterior.
* The calculation of risk in Bayesian decision theory relies on integration.
* Integration is also an important component in frequentist likelihood analyses.

* For example, marginalization of a joint density relies upon integration.
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* Aside from its application to Monte Carlo integration, simulation of random

draws from a target density f is important in many other contexts.

* Markov chain Monte Carlo, Bootstrap methods, stochastic search algorithms,
and a wide variety of other statistical tools also rely on generation of random

deviates.

* Monte Carlo integration motivates our focus on simulation of random

variables that do not follow a familiar parametric distribution.
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* We refer to the desired sampling density f as the target distribution.

* When the target distribution comes from a standard parametric family,

abundant software exists to easily generate random deviates.

* At some level, all code relies on the generation of standard uniform random

deviates.

* Given the deterministic nature of the computer, such draws are not really
random, but a good generator will produce a sequence of values that are

statistically indistinguishable from independent standard uniform variates.
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* Rather than rehash the theory of uniform random number generation, we
focus on the practical quandary faced by those with good software: what
should be done when the target density is not one easily sampled using the

software?

* For example, nearly all Bayesian posterior distributions are not members of

standard parametric families.

* Posteriors obtained when using conjugate priors in exponential families are

exceptions.
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* There can be additional difficulties beyond the absence of an obvious

method to sample f .

*|n many cases, especially in Bayesian analyses, the target density may be

Known only up to a multiplicative proportionality constant.

*|n such cases, f cannot be sampled and can only be evaluated up to that

constant.

* Fortunately, there are a variety of simulation approaches that still work in this

setting.
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* Finally, it may be possible to evaluate f, but computationally expensive.

* If each computation of f(x) requires an optimization, an integration, or other
time-consuming computations, we may seek simulation strategies that avoid

direct evaluation of f as much as possible.

* Simulation methods can be categorized by whether they are exact or

approximate.
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*|If f(x) can be calculated, at least up to a proportionality constant, then we
can use rejection sampling to obtain a random draw from exactly the target

distribution.

* This strategy relies on sampling candidates from an easier distribution and
then correcting the sampling probability through random rejection of some

candidates.

*Let g denote another density from which we know how to sample and for

which we can easily calculate g(x).
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g(x)

— 2 f(x) for all x

* Let e(-) denote an envelope, having the property e(x) = £
for which f(x) > 0 for a given constant o < 1.
* Rejection sampling proceeds as follows:

Sample ¥ ~ g.
Sample U ~ Umf(0, 1).

Reject Y if U = f(Y)/e(Y). In this case, do not record the value of ¥ as an
element in the target random sample. Instead, return to step 1.

L

fad

4. Otherwise, keep the value of Y. Set X =Y, and cbnsider X to be an element
of the target random sample. Return to step 1 until you have accumulated a
sample of the desired size.
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* The draws kept using this algorithm constitute an i.i.d. sample from the target

density f; there is no approximation involved.

* Thus, the sampling distribution is exact, and a can be interpreted as the

expected proportion of candidates that are accepted.
* Hence a is a measure of the efficiency of the algorithm.

* We may continue the rejection sampling procedure until it yields exactly the
desired number of sampled points, but this requires a random total number of

iterations that will depend on the proportion of rejections
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* |lllustration of rejection sampling for a target distribution f using a rejection

sampling envelope e.

e(y) -

Reject

Keep

f(x)

()
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* The simple Monte Carlo estimator of [ h(x)f (x)dx is

Aye = %Z’i"zl h(X;) where the variables X3, ..., X are randomly sampled from

f.
* This approach is intuitively appealing, and we have thus far focused on

methods to generate draws from f.

* However, in some situations better Monte Carlo estimators can be derived.
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* These approaches are still based on the principle of averaging Monte Carlo
draws, but they employ clever sampling strategies and different forms of
estimators to yield integral estimates with lower variance than the simplest

Monte Carlo approach.
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* Suppose we wish to estimate the probability that a die roll will yield a one.

* If we roll the die N times, we would expect to see about N/6 ones, and our point

estimate of the true probability would be the proportion of ones in the sample.
* The variance of this estimator is 5/36N if the die is fair.

* To achieve an estimate with a coefficient of variation of, say, 5%, one should expect

to have to roll the die 2000 times.

* To reduce the number of rolls required, consider biasing the die by replacing the

faces bearing 2 and 3 with additional 1 faces.
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* This increases the probability of rolling a one to 0.5, but we are no longer

sampling from the target distribution provided by a fair die.
* To correct for this, we should weight each roll of a one by 1/3.
*|In other words, let Y; = 1/3 if the roll is a one and Y; = 0 otherwise.

* Then the expectation of the sample mean of the Y; is 1/6, and the variance of

the sample mean is 1/36N.

* To achieve a coefficient of variation of 5% for this estimator, one expects to

need only 400 rolls.
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* This improved accuracy is achieved by causing the event of interest to occur
more frequently than it would in the naive Monte Carlo sampling framework,
thereby enabling more precise estimation of it.

* Using importance sampling terminology, the die-rolling example is successful
because an importance sampling distribution (corresponding to rolling the die
with three ones) is used to oversample a portion of the state space that
receives lower probability under the target distribution (for the outcome of a

fair die).
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* An importance weighting corrects for this bias and can provide an improved

estimator.

* For very rare events, extremely large reductions in Monte Carlo variance are

possible.
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*\What is variance reduction?

* A variance reduction technique is a statistical technique for improving the precision of a
simulation out-put performance measure without using more simulation, or alternatively

achieve a desired precision with less simulation effort”" (Kleijnen 1974)

*Why do we need variance reduction?

* In order to make a simulation statistically efficient, i.e., to obtain a greater precision and
smaller confidence intervals for the output random variable of interest, variance reduction

techniques can be used.
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We have been considering the estimation of © = E{h(X)} using a random sample

X1, ..., X,, drawn from f.Suppose that each X; = (X1, X;2) and that the conditional
expectation E{h(X;)|x;»} can be solved for analytically. To motivate an alternate esti-

mator to /iy, we may use the tfact that E{/(X;)} = E{E{h(X;)|Xj2}}, where the outer

expectation 1s taken with respect to the distribution of X;». The Rao—Blackwellized
estimator can be defined as

1 n
fixp = — Xl: E(h(X)|Xi2) (6.80)
=
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and has the same mean as the ordinary Monte Carlo estimator ji,-. Notice that

1 1
Val’{ﬁmc} = ;VaT{E{h(XmXEE}} + ;E{Vﬂl‘{h(xf)lez}} = VHT{ZERB} (6.81)

follows from the conditional variance formula. Thus, /igg 1S superior to iy 1n terms
of mean squared error. This conditioning process 1s often called Rao—Blackwellization
due to its use of the Rao—Blackwell theorem, which states that one can reduce the
variance of an unbiased estimator by conditioning it on the sufficient statistics [96].

Further study of Rao—Blackwellization for Monte Carlo methods 1s given in [99, 216,
507,542, 543].
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Example 6.14 (Rao—Blackwellization of Rejection Sampling) A generic ap-
proach that Rao—Blackwellizes rejection sampling 1s described by Casella and Robert
[99]. In ordinary rejection sampling, candidates Yi, ..., Yy are generated sequen-
tially, and some are rejected. The uniform random variables Uy, ..., Uy provide
the rejection decisions, with Y; being rejected if U; > w*(Y;), where w*(Y;) =
f(Y;)/e(Y;). Rejection sampling stops at a random time M with the acceptance of the
nth draw, yielding X1, ..., X,;. The ordinary Monte Carlo estimator of 1 = E{/h(X)}
can then be reexpressed as

M

) 1

Myve = n Z}I(YI')I{UJ‘EW*(Y;)L (6.82)
i=1
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which presents the intriguing possibility that /i)~ somehow can be improved by using
all the candidate Y; draws (suitably weighted), rather than merely the accepted draws.
Rao—Blackwellization of (6.82) yields the estimator

M
1
lon = — h(Y)Ht(Y), 6.83
MRB p ; 1Y) (Y) ( )
where the 7;(Y) are random quantities that depend on Y = (Y7, ..., Yvy) and M

according to

If(‘?) =k {1{U¢-EUJ*(Y5)}|M= Yl vvvvv YM}
= P[U; < w*(Y)|M, Yy, ..., Yuml. (6.84)
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Now 73/(Y) = 1 since the final candidate was accepted. For previous candidates, the
probability in (6.84) can be found by averaging over permutations of subsets of the
realized sample [99]. We obtain

w*(Y}) ZAeA,- HjeA w*(YJ)H;‘ ¢ aAll — w*(Y)]

ti(Y) = (6.85)
| >_peslljep W YD1 ¢ pll — w*(¥ )]
where A; 1s the set of all subsetsof {1, . .., i—1,1+1,..., M — 1} containing n — 2
elements, and 55 1s the set of all subsets of {1, ..., M — 1} containing n — 1 elements.

Casella and Robert [99] offer a recursion formula for computing the #,(Y), but it 1s
difficult to implement unless » 1s fairly small.
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Notice that the conditioning variables used here are statistically sufficient since
the conditional distribution of Uy, . .., Uy does not depend on f. Both figy and fiyc
are unbiased; thus, the Rao—Blackwell theorem 1mplies that jigg will have smaller
variance than iy . []
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* Stratified random sampling is a method of sampling that involves the division

of a population into smaller sub-groups known as strata.

* |n stratified random sampling, or stratification, the strata are formed based on
members' shared attributes or characteristics such as income or educational

attainment, sex, religion etc.

* Stratified random sampling is also called proportional random sampling or

quota random sampling.
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* Stratified sampling strategies

* Proportionate allocation

* Optimum allocation or disproportionate allocation

* Advantages

* Stratified random sampling allows researchers to obtain a sample population that best

represents the entire population being studied.

 Stratified random sampling involves dividing the entire population into homogeneous groups.
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* If measurements within strata have lower standard deviation (as compared to the overall

standard deviation in the population), stratification gives smaller error in estimation.

* For many applications, measurements become more manageable and/or cheaper when the

population is grouped into strata.
* When it is desirable to have estimates of population parameters for groups within the
population - stratified sampling verifies we have enough samples from the strata of interest.

* Disadvantages

* Stratified sampling is not useful when the population cannot be exhaustively partitioned into

disjoint subgroups.
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* It would be a misapplication oft he technique to make subgroups' sample sizes proportional to
the amount of data available from the subgroups, rather than scaling sample sizes to

subgroup sizes or to their variances, if known to vary significantly.

* Data representing each subgroup are taken to be of equal importance if suspected variation

among them justify stratified sampling.

* If subgroup variances differ significantly and the data needs to be stratified by variance, it is

not possible to simultaneously make each subgroup sample size proportional to subgroup size

within the total population.



Department of Computer

AMITY Science and Engineering

UNIVERSITY

* For an efficient way to partition sampling resources among groups that vary in their means,

variance and costs, then try for “optimum allocation”

* The problem of stratified sampling in the case of unknown class priors (ratio of subpopulations
in the entire population) can have deleterious effect on the performance of any analysis on the

dataset, e.g., classification.

* In that case, minimax sampling ratio can be used to make the dataset robust with respect to

uncertainty in the underlying data generating process
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* Thus far we have treated X with little regard to its dimensionality.

* The Gibbs sampler is specifically adapted for multidimensional target

distributions.

* The goal is to construct a Markov chain whose stationary distribution equals

the target distribution f .

* The Gibbs sampler does this by sequentially sampling from univariate

conditional distributions, which are often available in closed form.
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Recall X = (Xl., s X;))T,anddenotex_,: = (X1,...,. Xi—1, Xiz1, ..., X;})T.Sup—
pose that the univariate conditional density of X;|X-; = x_;,denoted f (x;| X-;),1s eas-
ily sampled fori =1, ..., p. A general Gibbs sampling procedure can be described
as follows:

1. Select starting values x, and set r = 0.

2. Generate. 1n turn,

2 e Xy

X(EHU .~ f (.Xg xiHl), xg)., Cee s x(r)) :

XU~ £ («‘fl NG x(”) |

P
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(1+1) (r+1) (+1) i+ (1
X}”—l . f (X)U_llxl .,.Xz g s e -,./r]”_z -,X)(” ) N
t+D| (t+1) (t+1) (r+1)
Xﬁ-’»‘ : f(xp|xl Xy e X 1)

where |- denotes conditioning on the most recent updates to all other elements
of X.

3. Increment 7 and go to step 2.
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* The completion of step 2 for all components of X is called a cycle.

* Several methods for improving and generalizing the basic Gibbs sampler are
discussed.

* The term xfti), which represents all the components of x, except for x;, at
their current values:

6 _ [ (+D @@+ (@) (1)
X_; = (""1 e X *"";‘Jrl"“"”‘;.r)
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Objective:

o To be able to understand the basics of Linux

o To explores the basic characteristics of Linux Networking

o To helps in learning about Linux Shell, File Structure and Network Administration Services
o |t gives overview about the Linux Security Techniques

Learning Outcomes
Student will be able to

(¢]

Perform the basic operations for Linux.

(¢]

Compare the various Linux security techniques.

(¢]

Implement the Docker in Linux.

(¢]

Execute the shell scripts on Linux.
Devise the network administration services.

(¢]

(¢]

Able to design device drivers
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o Christopher Negus, "Linux Bible: The comprehensive Tutorial, Resource ",
8nd Edition, John Wiley

o Richard Petersen "Linux: The Complete Reference," 6™ Edition, Tata Mc
Graw Hill

o Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, “Linux
Device Drivers”, 39 ed, O'Reilly
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Module Assessment
o Quiz

o Assignment

PSDA (Self Work)
o Minor Experiment
o Group Discussion

o Case study
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o Infroduction to Linux

o File System of the Linux

o General usage of Linux kernel & basic commands
o Linux users and group

o Permissions for file, directory and users

o Searching a file & directory

o ZIPPING and unzipping concepts

o Linux for the Industry 4.0 Erq,

o OPENIL and its advantages, Features of OPENIL
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About Linux, Linux System Architecture
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Linux Kernel
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* In computational physics and statistics , the Hamiltonian Monte Carlo
algorithm (also known as hybrid Monte Carlo ), is a Markov chain Monte
Carlo method

* Used for obtaining a sequence of random samples which converge to being
distributed according to a target probability distribution for which direct
sampling is difficult.

* This sequence can be used to estimate integrals with respect to the target
distribution ( expected values ).
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Hamiltonian dynamics operates on a d-dimensional position vector, g, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of ¢ and p known as the Hamiltonian, H(q,p).

Equations of motion. The partial derivatives of the Hamiltonian determine how ¢ and
p change over time, £, according to Hamilton’s equations:

dq; _ o 2.1)
dt Ip; '
dp; B ~OH (2.9)
dt dy; '
for 2 = 1.....d. For any time interval of duration s, these equations define a mapping, 7.

from the state at any time ¢ to the state at time ¢t +s. (Here, [, and hence 75, are assumed
to not depend on £.)
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Alternatively, we can combine the vectors ¢ and p into the vector z = (¢, p) with 2d
dimensions, and write Hamilton's equations as
dz ‘
— = JVIH(z) (2.3)
dt
where VI is the gradient of I (ie, |VH|, = 0H/0z;), and
Orb{rﬁ !rb{d.
J = [ ] (2.4)
_/d.xd. Orf.‘;-(rf.

is a 2d x 2d matrix whose quadrants are defined above in terms identity and zero matrices.
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Potential and kinetic energy. For Hamiltonian Monte Carlo, we usually use Hamilto-
nian functions that can be written as follows:

H(q.p) = Ulq) + K(p) (2.5)

Here, U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for ¢ that we wish to sample, plus any constant that is convenient.
K (p) is called the kinetic energy, and is usually defined as

Kp) = p"M'p/2 (2.6)
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Here. M is a symmetric, positive-definite “mass matrix”, which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for A(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M.

With these forms for A and K, Hamilton’s equations, (2.1) and (2.2), can be written as
follows, for ¢ = 1.....d:

dq; B .
dt (M~ pl; (2.7)
Ip; U

dp; ol (2.8)

dt B Aq;
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A one-dimensional example. Consider a simple example in one dimension (for which
g and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:

H(g,p) = Ulg) + K(p), Ulg) =4q¢°/2. K(p)=p*/2 (2.9)

As we'll see later in Section 3.1, this corresponds to a Gaussian distribution for ¢ with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following equa-

tions (2.7) and (2.8)) is

dq dp |
— =p, — = —q. 2.10
il C /. (2.10)
Solutions have the following form, for some constants » and a:
q(t) = rcos(a+1t), p(t)=—rsin(a+1) (2.11)

Hence the mapping 75 is a rotation by s radians clockwise around the origin in the (¢, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simmple
periodic form, but this example does illustrate some important properties that we will look
at next.
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* In computational physics and statistics , the Hamiltonian Monte Carlo
algorithm (also known as hybrid Monte Carlo ), is a Markov chain Monte
Carlo method

* Used for obtaining a sequence of random samples which converge to being
distributed according to a target probability distribution for which direct
sampling is difficult.

* This sequence can be used to estimate integrals with respect to the target
distribution ( expected values ).
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Hamiltonian dynamics operates on a d-dimensional position vector, g, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of ¢ and p known as the Hamiltonian, H(q,p).

Equations of motion. The partial derivatives of the Hamiltonian determine how ¢ and
p change over time, £, according to Hamilton’s equations:

dq; _ o 2.1)
dt Ip; '
dp; B ~OH (2.9)
dt dy; '
for 2 = 1.....d. For any time interval of duration s, these equations define a mapping, 7.

from the state at any time ¢ to the state at time ¢t +s. (Here, [, and hence 75, are assumed
to not depend on £.)
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Alternatively, we can combine the vectors ¢ and p into the vector z = (¢, p) with 2d
dimensions, and write Hamilton's equations as
dz ‘
— = JVIH(z) (2.3)
dt
where VI is the gradient of I (ie, |VH|, = 0H/0z;), and
Orb{rﬁ !rb{d.
J = [ ] (2.4)
_/d.xd. Orf.‘;-(rf.

is a 2d x 2d matrix whose quadrants are defined above in terms identity and zero matrices.
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Potential and kinetic energy. For Hamiltonian Monte Carlo, we usually use Hamilto-
nian functions that can be written as follows:

H(q.p) = Ulq) + K(p) (2.5)

Here, U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for ¢ that we wish to sample, plus any constant that is convenient.
K (p) is called the kinetic energy, and is usually defined as

Kp) = p"M'p/2 (2.6)
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Here. M is a symmetric, positive-definite “mass matrix”, which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for A(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M.

With these forms for A and K, Hamilton’s equations, (2.1) and (2.2), can be written as
follows, for ¢ = 1.....d:

dq; B .
dt (M~ pl; (2.7)
Ip; U

dp; ol (2.8)

dt B Aq;
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A one-dimensional example. Consider a simple example in one dimension (for which
g and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:

H(g,p) = Ulg) + K(p), Ulg) =4q¢°/2. K(p)=p*/2 (2.9)

As we'll see later in Section 3.1, this corresponds to a Gaussian distribution for ¢ with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following equa-

tions (2.7) and (2.8)) is

dq dp |
— =p, — = —q. 2.10
il C /. (2.10)
Solutions have the following form, for some constants » and a:
q(t) = rcos(a+1t), p(t)=—rsin(a+1) (2.11)

Hence the mapping 75 is a rotation by s radians clockwise around the origin in the (¢, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simmple
periodic form, but this example does illustrate some important properties that we will look
at next.
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* Has the chain run long enough?

* |s the first portion of the chain highly influence by the starting value?
* Should the chain be run from several different starting values?

* Has the chain traversed all portions of the region of support of f?

* Are the sampled values approximate draws from f?

* How shall the chain output be used to produce f estimates and assess their
precision?
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* Ensuring Good Mixing and Convergence
v'Simple Graphical Diagnostics
»sample path
» cumulative sum
» autocorrelation plot
v'Burn-in and Run Length
v'Choice of Proposal
v'Reparameterization
v’ Comparing Chains: Effective Sample Size
v'Number of Chains
* Practical Implementation Advice
* Using the Results
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v'Burn-in and Run Length:- This method is based on a statistic motivated by
an analysis of variance (ANOVA): The burn-in period or MCMC run-length
should be increased if a between-chain variance is considerably larger than
the within-chain variance.

Let L denote the length of each chain after discarding D burn-in iterates. Sup-
pose that the variable (e.g., parameter) of interest 1s X, and its value at the 7th iteration

ff). Thus, for the jth chain, the D values XD .,rgD_l) a

J
discarded and the L values .:E,-D) ,,,,,, X 'E,-D +L=D

of the jth chain 1s x re

are retained. Let
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1 D+L—1 1 J
%= Y« and x = }foj, (7.19)
=D j=1

and define the between-chain variance as

I J
12 X—x)°. (7.20)

J=1

T -

Next define

to be the within-chain variance for the jth chain. Then let



Department of Computer

AMITY Science and Engineering

UNIVERSITY

to be the within-chain variance for the jth chain. Then let

— 2

1
W=}ZS+ (721)

J=1

represent the mean of the J within-chain estimated variances. Finally, let

(L~ 1/LIW +(1/L)B
_ - |

R (7.22)

If all the chains are stationary, then both the numerator and the denominator should
estimate the marginal variance of X . If, however, there are notable differences between
the chains, then the numerator will exceed the denominator.
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In theory, /R — 1 as L — 00. In practice, the numerator in (7.22) is slightly
too large and the denominator 1s slightly too small. An adjusted estimator 1s given by

J+1 L —1
LR

R = et
J JL

Some authors suggest that VR < 1.1 indicates that the burn-in and chain length are
sufficient [544]. Another useful convergence diagnostic is a plot of the values of R
versus the number of iterations. When R has not stabilized near 1, this suggests lack
of convergence. If the chosen burn-in period did not yield an acceptable result, then D
should be increased, L should be increased, or preferably both. A conservative choice
1s to use one-half of the iterations for burn-in. The performance of this diagnostic 1s
improved 1if the iterates xif) are transformed so that their distribution is approximately
normal. Alternatively, a reparameterization of the model could be undertaken and the

chain rerun.
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* There are several potential difficulties with this approach.

* Selecting suitable starting values in cases of multimodal f may be difficult,
and the procedure will not work if all of the chains become stuck in the same
subregion or mode.

* Due to its unidimensionality, the method may also give a misleading
impression of convergence for multidimensional target distributions.

* Raftery and Lewis proposed a very different quantitative strategy for
estimating run length and burn-in period.

* Some researchers advocate no burn-in
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v’ Choice of Proposal
v'Reparameterization
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