Module 3: Assignment 1

April 13, 2022

- 1. Given two positive integers 'x' and 'y'. Design a Turing machine that computes x-y
- 2. Given two positive integers 'x' and 'y'. Design a Turing machine that computes x+y
- 3. Design a Turing machine that computes $1^n.1^m$ (multiply 1^n with 1^m).
- 4. Let x and y be two positive integers represented in unary notation. Construct a Turing machine that will halt in final state q_y if $x \ge y$ and that will halt for non-final state q_n if x < y. More precisely, the machine is to perform the computation

```
q_0 w(x) 0 w(y) \vdash *q_y w(x) 0 w(y) : if x \ge y
q_0 w(x) 0 w(y) \vdash *q_n w(x) 0 w(y) : if x < y
```

- 5. Construct a Turing machine to compute the function: $F(w) = w^R$, where $w \in \{0,1\}^+$
- 6. Design a Turing Machine that can accept $L = \{a^n b^n | n \ge 1\}$
- 7. Design a Turing Machine that can accept $L = \{a^n b^n c^n | n \ge 1\}$
- 8. Design a LBA that can accept $L = \{a^n b^n | n \ge 1\}$
- 9. Design a LBA that can accept $L = \{a^n b^n c^n | n \ge 1\}$