Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology
(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in
www.akyadav.in
+91 9911375598

August 29, 2019

Matrix Chain Multiplication(MCM)

- Matrix chain multiplication is not the multiplication of the matrices but it is the way to find the order of matrix multiplication with minimum number of scalar multiplication.
- It is mainly fully parenthesization of the matrices
- ▶ ABC can be multiplied by two way : A(BC) or (AB)C.
- Which one cost the minimum number of scalar multiplication can be found using MCM
- ▶ Find the order of multiplication of the matrices $A_1A_2...A_n$
- We need an array p of size n+1 to store the dimensions of n compatible matrices

Step 1: The structure of an optimal parenthesization I

- ▶ Let $A_{i...j} = A_i ... A_j$ is the product of matrices from $A_i, A_{i+1}, ... A_j$ for $i \le j$
- ▶ if i = j then there is only one matrix and number of scalar multiplication is zero.
- ▶ if i < j then we can put parenthesis anywhere after A_i but before A_j
- Suppose we use parenthesis after matrix A_k i.e. $(A_i ... A_k)(A_{k+1} ... A_j)$ where $i \le k < j$ for optimal solutions
- Now the total cost of the $A_{i...j}$ will be cost of $A_{i...k}$ plus cost of $A_{k+1...j}$ plus the cost of multiplying them together.
- ► We supposed *k* is at optimal position so no other value of *k* is less costly.
- ▶ So $A_{i...k}$ and $A_{k+1...j}$ is also optimal.

Step 1: The structure of an optimal parenthesization II

- ► We can find out the optimal solution of the the problem from optimal solution of the the sub-problem
- We have to take the correct value of $k, i \le k < j$ such that the sub-problems having the optimal solutions.
- ▶ We have to examine all possible value of *k* for the optimal solution.

Algorithms Design and Analysis

Step 2: A recursive solution I

We have to define cost of an optimal solution recursively in terms of the optimal solutions to sub-problems.

- Let m[i,j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i...j}$ where $1 \le i \le j \le n$
- ▶ The lowest cost to multiply $A_{1...n}$ will be m[1, n].
- If i = j that is there is only one matrix then no need to multiply. The m[i, i] = 0 for all $1 \le i \le n$.
- If i < j then we split the matrix at position k for optimal solution.
- The total cost will be $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1} \times p_k \times p_j$
- For all possible values of $k=i,i+1,\ldots,j-1$ we have to find out m[i,j]
- ▶ We pick that value of k for which m[i,j] is minimum.

Step 2: A recursive solution II

▶ ∴ Recursive definition for the minimum cost of parenthesizing the product $A_{i...j} = A_i A_{i+1} ... A_j$ will be:

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1} \times p_k \times p_j \} & \text{if } i < j \end{cases}$$

▶ Store the value of k in s[i,j] for which m[i,j] is minimum.

Step 3: Computing the optimal costs I

- ► We can find the solution of the above recurrence by using two methods: Bottom-up or top-down.
- We compute overlapping sub-problems only once to avoid the exponential time cost.
- ▶ A_i is on dimensions $p_{i-1} \times p_i$.
- ▶ Table m[1...n,1...n] is used for storing m[i,j] and s[1...n-1,2...n] is used to store the value of k for which m[i,j] is minimum for all $i \le k < j$.

Step 3: Computing the optimal costs II

Bottom-up Approach:

MATRIX-CHAIN-ORDER(p,n)

- 1. Let m[1...n, 1...n] and s[1...n-1, 2...n]
- 2. for i = 1 to n
- 3. m[i, i] = 0
- 4. for I = 2 to n // I is the chain length
- 5. for i = 1 to n l + 1
- 6. j = i + l 1
- 7. $m[i,j] = \infty$
- 8. for k = i to j 1
- 9. $q = m[i,k] + m[k+1,j] + p_{i-1} \times p_k \times p_j$
- 10. if q < m[i,j]
- 11. m[i,j] = q
- 12. s[i,j] = k
- 13. return *m*, *s*

Step 3: Computing the optimal costs III

Top-down Approach:

MEMOIZED-MATRIX-CHAIN(p,n)

- 1. Let m[1...n, 1...n]
- 2. for i = 1 to n
- 3. for j = i to n
- 4. $m[i, i] = \infty$
- return LOOKUP-CHAIN(m,s,p,1,n)

LOOKUP-CHAIN(m,s,p,i,j)

- 1. if $m[i,j] < \infty$
- 2. return m[i,j]
- 3. if i = j
- 4. m[i,j] = 0
- 5. else for k = i to j 1

Step 3: Computing the optimal costs IV

- 6. $q = LOOKUP-CHAIN(m,s,p,i,k) + LOOKUP-CHAIN(m,s,p,k+1,j)+p_{i-1}p_kp_j$
- 7. if q < m[i, j]
- 8. m[i,j]=q
- 9. s[i,j]=k
- 10. return m[i,j]

Step 4: Constructing an optimal solution I

- ▶ Table m[i,j] gives the number of scalar multiplication to multiply matrices from A_i to A_j but does not show the order of multiplication
- ▶ Table s[i,j] store the position of the parenthesis to partition the matrices from A_i to $A_k = A_{s[i,j]}$ and $A_{s[i,j]+1}$ to A_j .
- ▶ So the multiplication will be $(A_i ... A_{s[i,j]})$ and $(A_{s[i,j]+1} ... A_j)$

PRINT-OPTIMAL-PARENS(s,i,j)

- 1. if i = j
- 2. print A_i
- 3. else print "("
- 4. PRINT-OPTIMAL-PARENS(s, i, s[i, j])
- 5. PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
- 6. print ")"

Complexity of the MCM is $O(n^3)$

Thank you

Please send your feedback or any queries to akyadav1@amity.edu, akyadav@akyadav.in or contact me on +91~9911375598

