
Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology

(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in

www.akyadav.in
+91 9911375598

August 20, 2019

Dr. A K Yadav Algorithms Design and Analysis 1/13



Complexity analysis: Quick Sort I

QUICK-SORT(A, p, r)
1 if p < r

2 q=PARTITION(A,p,r)
3 QUICK-SORT(A, p, q-1)
4 QUICK-SORT(A, q+1, r)

PARTITION(A, p, r)
5 x = A[r ]
6 i = p
7 for j = p to r − 1

8 if A[j] ≤ x
9 if(i 6= j) swap(A[i ], A[j])

10 i = i + 1

11 swap(A[i ], A[r ])
12 return i

Analysis:
Dr. A K Yadav Algorithms Design and Analysis 2/13



Complexity analysis: Quick Sort II

I The number of calls of PARTITION depends on
QUICK-SORT

I The number of calls of QUICK-SORT depends on q
I If PARTITION returns q as middle value for every call
I Then array will be divided in two half every time
I So after lg n times, p = r and process will terminate.
I This will be Best Case of the algorithm.
I ∴ T (n) = O(n lg n) for best case
I But if PARTITION find A[r ] fit at its current location after

checking p to r-1 elements then it return q as an end position
and making partition of size 0 and n − 1.

I So every time the array size is reduced by only 1.
I The process will terminate after n operations.

Dr. A K Yadav Algorithms Design and Analysis 3/13



Complexity analysis: Quick Sort III

I This will be Worst Case of the algorithm and happens when
input is already sorted.

I Step 7 will be executed n times for every value of q in step 2.
I ∴ T (n) = O(n2) for worst case

Dr. A K Yadav Algorithms Design and Analysis 4/13



Randomized Quick Sort I

I To avoid the worst performance of the Quick Sort for sorted
input, we use Randomized Quick Sort.

I In this we choose pivot element randomly.
Algorithm:
RANDOMIZED-QUICK-SORT(A, p, r)

1 if p < r
2 q=RANDOMIZED-PARTITION(A,p,r)
3 RANDOMIZED-QUICK-SORT(A, p, q-1)
4 RANDOMIZED-QUICK-SORT(A, q+1, r)

RANDOMIZED-PARTITION(A, p, r)
5 i = Random(p, r)
6 swap(A[i ], A[r ])
7 x = A[r ]
8 i = p

Dr. A K Yadav Algorithms Design and Analysis 5/13



Randomized Quick Sort II

9 for j = p to r − 1
10 if A[j] ≤ x

11 if(i 6= j) swap(A[i ], A[j])
12 i = i + 1

13 swap(A[i ], A[r ])
14 return i

This algorithm performs worst case only when Random(p, r) always
gives the location of the largest/smallest number which is very rare.

Dr. A K Yadav Algorithms Design and Analysis 6/13



Strassen’s algorithm for Matrix Multiplications I

I if we multiply two matrices Cn×m = An×lBl×m
I Total number of scaler multiplications will be n × l × m
I If we take matrices of size n × n where n is power of 2 i.e

n = 2i

I Total number of scaler multiplications will be n3

I If we divide size by 2 then the matrices will be

A =
(

A11 A12
A21 A22

)

B =
(

B11 B12
B21 B22

)

C =
(

C11 C12
C21 C22

)
Dr. A K Yadav Algorithms Design and Analysis 7/13



Strassen’s algorithm for Matrix Multiplications II

I (
C11 C12
C21 C22

)
=
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)

I

C11 = A11.B11 + A12.B21

C12 = A11.B12 + A12.B22

C21 = A21.B11 + A22.B21

C22 = A21.B12 + A22.B22

I So there are 8 multiplication and 4 submissions of size n/2

Dr. A K Yadav Algorithms Design and Analysis 8/13



Strassen’s algorithm for Matrix Multiplications III

I

T (n) = 8T
(n

2

)
+ 4(n/2)2

I Solution of the recurrence will be Θ(n3) using master theorem.
So no benefit of dividing the main problem in subproblems.

I Strassen’s gives 18 sum and 7 products of size n/2 as follows:

S1 = B12 − B22

S2 = A11 + A12

S3 = A21 + A22

S4 = B21 − B11

S5 = A11 + A22

Dr. A K Yadav Algorithms Design and Analysis 9/13



Strassen’s algorithm for Matrix Multiplications IV

S6 = B11 + B22

S7 = A12 − A22

S8 = B21 + B22

S9 = A11 − A21

S10 = B11 + B12

I 7 products will be

P1 = A11.S1

P2 = S2.B22

P3 = S3.B11

P4 = A22.S4

Dr. A K Yadav Algorithms Design and Analysis 10/13



Strassen’s algorithm for Matrix Multiplications V

P5 = S5.S6

P6 = S7.S8

P7 = S9.S10

I Now the the matrix will be

C11 = P5 + P4 − P2 + P6

C12 = P1 + P2

C21 = P3 + P4

C22 = P5 + P1 − P3 − P7

I There are 7 multiplication and 18 submissions of size n/2

Dr. A K Yadav Algorithms Design and Analysis 11/13



Strassen’s algorithm for Matrix Multiplications VI

I

T (n) = 7T
(n

2

)
+ 18(n/2)2

I The solution of the recurrence will be Θ(nlg 7) using master
theorem which is less then Θ(n3)

I So Strassen’s algorithm is faster then divide and conquer.
I Ques.1 Find the product of the following matrices using

Strassen’s algorithm.(
1 3
7 5

)(
6 8
4 2

)

Dr. A K Yadav Algorithms Design and Analysis 12/13



Thank you

Please send your feedback or any queries to akyadav1@amity.edu,
akyadav@akyadav.in or contact me on +91 9911375598

Dr. A K Yadav Algorithms Design and Analysis 13/13


