Algorithms Design and Analysis [ETCS-301]

Dr. A K Yadav
Amity School of Engineering and Technology
(affiliated to GGSIPU, Delhi)
akyadav1@amity.edu
akyadav@akyadav.in
www.akyadav.in
+91 9911375598

November 9, 2019

String matching with finite automata I

Finite automata

A finite automaton A is a 5-tuple $(Q, q_0, F, \sum, \delta)$ where

- Q is a finite set of states
- $ightharpoonup q_0 \in Q$ is the start/initial state
- $ightharpoonup F \subseteq Q$ is a set of accepting/final states
- ► ∑ is a finite input alphabet
- ▶ δ is a transition function of A such that $Q \times \sum \rightarrow Q$ that is $\delta(q_i \in Q, c \in \sum) = q_j \in Q$

Final-state function ϕ is a sequence of transitions, the automata will be in a state after scanning string w that is $\phi(w)=q$ where $w\in \sum^*, q\in Q$. $\phi(\varepsilon)=q_0$ and $\phi(wa)=\delta(\phi(w),a)$ for $w\in \sum^*, a\in \sum$. A accepts a string w if and only if $\phi(w)\in F$.

String matching with finite automata II

String-matching automata

A finite automaton A is a 5-tuple $(Q, q_0, F, \sum, \delta)$ for pattern P[1..m] and text T[1..n] where

- ▶ $Q = \{0, 1, ..., m\}$ is a set of states
- $ightharpoonup 0 \in Q$ is the start state
- ▶ $m \subseteq Q$ is a accepting state
- ightharpoonup is a finite input alphabet
- $lacksqrup \delta$ is a transition function of A such that $\delta(q,a) = \sigma(P_q a)$

Suffix function $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x:

$$\sigma(x) = \max\{k : p_k \sqsupset x\}$$

$$\phi(T_i) = \sigma(T_i)$$

when $\phi(T_i) = \sigma(T_i) = m$ it means $P_m \supset T_i$ that is last m characters of T_i is same as P that is pattern matches at shift i - m.

Computing the transition function

COMPUTE-TRANSITION-FUNCTION(P, \sum)

- 1. m = length(P)
- 2. for q = 0 to m
- 3. for each character $a \in \sum$
- 4. $k = \min(m, q + 1)$
- 5. while $P_k \supset P_q a$
- 6. k = k 1
- 7. $\delta(q, a) = k$
- 8. return δ

Time taken in creating the transition table using δ function for $|\sum|$ characters and finding the maximum k for $P_k \supset P_m$ is $O(m^3|\sum|)$. It can be reduced to $O(m|\sum|)$

Algorithm

FINITE-AUTOMATON-MATCHER (T, δ, m)

- 1. n = length(T)
- 2. q = 0
- 3. for i = 1 to n
- 4. $q = \delta(q, T[i])$
- 5. if q == m
- 6. print Pattern occurs with shift i m

Time complexity of the algorithm is $\Theta(n)$.

Thank you

Please send your feedback or any queries to akyadav1@amity.edu, akyadav@akyadav.in or contact me on +91~9911375598

