
Module 1:
Introduction to Languages and Automata

Dr. A K Yadav

April 28, 2022



Outline
1 Introduction

2 Preliminaries

3 Mathematical Preliminaries

4 Finite Automaton

5 Non Deterministic Finite Automata

6 Equivalence of DFA and NDFA

7 Constructing required DFA

8 Finite Automata with Output

9 Transforming Mealy machine into Moore machine

10 Transforming Moore machine into Mealy machine

11 Minimization of Finite Automata

12 Formal Grammar

13 Chomsky Classification of Languages

14 Regular Expression

15 Regular Language

16 Identities for Regular Expression
Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 2/131



Outline

17 NFA with null moves

18 Automata and Regular Expression

19 State Elimination method

20 Elimination of ϵ moves

21 Conversion of null moves NFA to DFA

22 Arden’s Theorem

23 Conversion of RE to DFA

24 Two way finite automata

25 Pumping Lemma for Regular Sets

26 Myhill-Nerode Theorem

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 3/131



Introduction

Theory of Computation: Introduction

Theory of Computation is the branch of Computer Science
which deals with how efficiently problems can be solved on
model of computation using an algorithm

The domain is further classified into 3 sub-domains:
Automata theory and languages
Computability theory
Complexity theory
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Introduction

Preliminaries

Propositions (or Statements)

Connectives (Propositional connectives or Logical connectives)
NOT (Negation)¬P
AND (Conjunction) P ∧ Q
OR (Disjunction) P ∨ Q
If.. Then... (Implication)
If and only If

Tautology- A tautology or a universally true formula is a well
defined formula whose truth value is T for all possible
assignments of truth values to the propositional variables.
Example-P ∨ ¬P
Contradiction- A contradiction (or absurdity) is well formed
formula whose truth value is F for all possible assignments of
truth values to propostion variables.
Example-P ∧ ¬P
Equivalence
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Preliminaries

Preliminaries

Equivalence- Two well formed α and β in propositional
variables P1,P2, ....Pn are equivalent (or logically equivalent)
if the formula α↔ β is a tautology.

Example

(P =⇒ (Q ∨ R)) ≡ ((P =⇒ Q) ∨ (P =⇒ R))
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Preliminaries

Preliminaries

Logical Identities

Idempotent laws- P ∨ P ≡ P, P ∧ P ≡ P
Commutative laws- P ∨ Q ≡ Q ∨ P, P ∧ Q ≡ Q ∧ P
Associative laws- P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R

P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R
Distributive laws- P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
Absorption laws- P ∧ (P ∨ Q) ≡ P

P ∨ (P ∧ Q) ≡ P
De-morgan’s Laws- ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

¬(P ∧ Q) ≡ ¬P ∨ ¬Q
Contrapositive- P ⇒ Q ≡ ¬Q ⇒ ¬P

P ⇒ Q ≡ ¬P ∨ Q
Double negation- P ≡ ¬(¬P)
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Preliminaries

Questions

Show that:
(P ∧ Q) ∨ (P ∧ ¬Q) ≡ P

Show that:
(P =⇒ Q) ∧ (R =⇒ Q) ≡ (P ∨ R) =⇒ Q
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Mathematical Preliminaries

Mathematical Preliminaries
Set:

A set is well defined collection of objects.
Example-Set of all students in ASET,
Collection of all books in library.

Individual objects are called Members or Elements of the
set.

Capital letter usually represent Set such as A,B,C,...

Small letters represent Elements of any set such as a,b,c,....

If a is an element of set A =⇒ a ∈ A

Ways of describing set
Listing its element with no repetition
Example: {15, 30, 45, 60, 75, 90}
Describing properties of elements of set
Example: {n | nisapositiveintegerdivisibleby15andlessthan100}
By recursion
Example: Set of all natural numers leaving remainder 1 when
divided by 3 can be written as
{an | a0 = 1, an+1 = an + 3}
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Mathematical Preliminaries

Mathematical Preliminaries

Subsets and Operations on Sets

A set A is said to be subset of B i.e. (A ⊆ B), if every
element of A is also an element of B.

If two sets A and B are equal i.e. (A = B)
=⇒ A ⊆ B and B ⊆ A.

Empty set: A set with no elements.

Operations on sets:
A ∪ B: {x | x ∈ A or x ∈ B} called union of A and B.
A ∩ B: {x | x ∈ A and x ∈ B} called intersection of A and B.
A− B: {x | x ∈ A and x /∈ B} called complement of B in A.
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Mathematical Preliminaries

Mathematical Preliminaries
Graph

A graph (or undirected graph) consists of:
a non-empty set V of vertices
a set E called set of edges.
a map ϕ which assigns to every edge a unique unordered pair of
vertices.

A directed graph or (digraph) consists of
a non-empty set V of vertices
a set E called set of edges
a map ϕ which assigns to every edge a unique ordered pair of
vertices.
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Mathematical Preliminaries

Mathematical Preliminaries

Tree

A graph is called a tree if it is connected and has no circuits

Properties of tree:
A tree is connected graph with no circuits or loops
there is one and only one path between every pair of vertices.
if a connected graph has n vertices =⇒ has n − 1 edges, implies
a tree
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Mathematical Preliminaries

Automata

Automata is defined as a system where energy, material and
information are transformed, transmitted and used for
performing some function without direct human participation.

Example: Automatic machine tools, automatic packing
machines, automatic photoprinting machines

Figure 1: Automatic machine tools
Figure 2: Automatic photoprinting
machine
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Mathematical Preliminaries

Discrete Automata
Model of discrete automaton:

Figure 3: Model of a discrete automaton

Characteristics of Automata
Input-At a discrete instant of time t1, t2, .....tm, input values
I1, I2....Ip take finite number of fixed values from input alphabet Σ
are applied as input to model.

Output- O1,O2, ...Oq are output of model, each of which can take
finite number of fixed values from an Output.
States- At any instant of time, the automaton can be in one of the
states q1, q2, ...qn
State relation- The next state of an automaton at any instant of
time is determined by present state and present input.
Output relation- On reading an input symbol, automaton moves to
next state which is given by state relation.
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Mathematical Preliminaries

Discrete Automata

Automaton without Memory:An automata in which the
output depends only on input.

Automaton with finite Memory: An automaton in which the
output depends on states as well as input.

Moore Machine: An automaton in which the output depends only
on states of machine.
Mealy Machine: An automaton in which output depends on the
state as well as on the input at any instant of time.
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Mathematical Preliminaries

Discrete Automata
Any sequential machine behaviour can be represented by an
automaton.

Example: Consider a 4-bit serial shift register as a finite state
machine.

24 = 16 states (0000, 0001, ...., 1111)

1 serial Input and 1 serial output

Input alphabet, Σ = {0,1}
Can be represented as

Here, output depends on both Input and state ∴ Mealy machine.
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Finite Automaton

Finite Automaton

A finite automaton can be represented by a finite 5-tuple
(Q,Σ, δ, q0,F ), where:

Q is a finite non-empty set of states.
Σ is a finite non-empty set of inputs called Input alphabet.
δ is a function which maps Q × Σ → Q called Direct transition
function
It describes change of states during transition.
It is represented by transition table \ diagram.
q0 ∈ Q is Initial state
F ⊆ Q is the set of Final states

The transition function which maps Q × Σ∗ into Q is called
Indirect transition function.
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Finite Automaton

Finite Automata

Figure 4: Block diagram of Finite Automata

Input tape: Each square contains a single symbol from input
alphabet Σ.

∁ and $ are end markers of Tape
Absence of end markers indicates that the tape is of infinite length

Reading Head: Examines only 1 □ at a time
can move from Left → Right or Right → Left

Finite Control: Input to a finite control will usually be a
symbol under read head.
Following Outputs:

A motion to R-head along the tape on next □
Next state of the finite state machine given by δ(q, a)
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Finite Automaton

Transition Systems

A transition system or transition graph is finite directed
labelled graph in which each vertex (node) is represented by a
state and edges are labelled with input/output.

A transition system is a 5-tuple (Q,Σ, δ, Q0, F )
where:

Q, Σ, F are finite non-empty set of states, input alphabet and set
of final states respectively.
Q0 ⊆ Q and is non-empty
δ is a finite subset of Q × Σ∗ × Q
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Finite Automaton

Transition system
A transition system accepts a string w in Σ∗ if:

There exists a path which originates from some initial state, goes
along the arrows and terminates at some final state, and
The path value obtained by concatenation of all edge-labels of the
path is equal to w

Example
Consider the given transition system:

Determine the initial states, final states and acceptability of 101011, 111010.
Initial states:q0 and q1; Final State:q3
Path value q0q0q2q3 for 101011 =⇒ accepted by system
But, 111010 not accepted
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Finite Automaton

Transition function

Every finite automaton (Q, Σ, δ, q0, F) can be viewd as a
transition system (Q, Σ, δ’,Q0,F) if we take Q0= {q0} and
δ′={(q,w,δ(q,w))| q ∈ Q, w ∈ Σ∗}
But, a transition system need not be a finite automaton.

Example: A transition system may contain more than one
initial state.

Properties of Transition Functions:
1 δ(q,∧) = q is a finite automaton

=⇒ State of the system can be changed only by an input symbol.
2 For all strings w and input symbol a:
δ(q, aw)= δ(δ(q, a),w)
δ(q,wa)= δ(δ(q,w), a)

Exercise:

Prove that for any transition function δ and for any two input
string x and y
δ(q, xy)=δ(δ(q, x), y)
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Finite Automaton

Acceptability of a String by a finite automaton
A string ’x’ is accepted by a finite automaton M = (Q, Σ, δ, q0, F )
if δ(q0, x)= q for some q ∈ F

Example
Consider the finite state machine whose transition function δ is given below in form of
a transition table. Here, Q={q0, q1, q2, q3}, Σ = {0, 1}, F = {q0}.
Give the entire sequence of states for the input string 110101.

Input
State 0 1
→q0O q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2

Answer: δ(q0, 110101)= δ(q1, 10101)
= δ(q0, 0101)
= δ(q2, 101)
= δ(q3, 01)
= δ(q1, 1)
= δ(q0,∧)
=q0

Hence, q0
1−→ q1

1−→ q0
0−→ q2

1−→ q3
0−→ q1

1−→ q0 Accepted
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Non Deterministic Finite Automata

Non-Deterministic Finite State Machines

A non-deterministic finite automaton (NDFA) is a 5-tuple
(Q,Σ, δ, q0,F ) where
Q is a finite non-empty set of states
Σ is a finite non-empty set of inputs
δ is a transition function mapping from Q × Σ into 2Q which
is power set of Q, the set of all subsets of Q
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states.
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Non Deterministic Finite Automata

Non-Deterministic Finite State Machines

Consider a Non-deterministic automaton as under:

Determine the sequence of states for input string 0100

δ(q0, 0100)= {q0, q3, q4}
Since q4 is the final state. ∴ input string 0100 is accepted by the system.

A string w ∈ Σ∗ is accepted by NDFA ”M”. If δ(q0,w) contains some final
state.
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Equivalence of DFA and NDFA

Equivalence of DFA and NDFA

A DFA can simulate the behaviour of NDFA by increasing the
number of states

DFA (Q, Σ, δ, q0, F) can be viewed as NDFA (Q, Σ, δ′, q0, F)

Any NDFA is a more general machine without being more
powerful.
=⇒ For every NDFA, there exists a DFA which simulates the
behaviour of NDFA.

Alternatively, if L is a set accepted by
NDFA, then there exists a DFA which also accepts L.

Example
Contruct a deterministic automaton equivalent to M=({q0, q1}, {0, 1}, δ, q0, {q0})
where δ is defined as under:

State Input
0 1

→q0O q0 q1
q1 q1 q0,q1
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where δ is defined as under:

State Input
0 1

→q0O q0 q1
q1 q1 q0,q1

Solution: For the deterministic automaton M1:

The states are subsets of {q0,q1}
=⇒ ϕ, [q0], [q1], [q0, q1]

[q0] is initial state.

[q0] and [q0, q1] are final states as these are the only states containing q0

δ is defined by state table as under:

State Input
0 1

[ϕ] [ϕ] [ϕ]
[q0] [q0] [q1]
[q1] [q1] [q0,q1]

[qo ,q1] [qo ,q1] [qo ,q1]
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Equivalence of DFA and NDFA

NDFA → DFA

Example 2
Find a deterministic acceptor equivalent to:
M= ({q0,q1,q2},{a,b}, δ, q0, {q2})
where δ is given by

State Input
a b

→ q0 q0, q1 q2
q1 q0 q1
q2O ϕ q0, q1

Solution: The deterministic automaton M1 equivalent to M is defined as follows:
M1=(2Q ,{a,b}, δ, [q0], F’)
where, F’= {[q2],[q0, q2],[q1, q2],[q0, q1, q2]}

State Input
a b

[q0] [q0, q1] [q2]
[q1] [q0] [q1]
[q2] ϕ [q0, q1]

[q0, q1] [q0, q1] [q1, q2]
[q1, q2] [q0] [q0, q1]
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q1 q2 q1
q2 q3 q3
q3O q2

Solution: Let Q = {q0, q1, q2, q3}, then the deterministic automaton M1 equivalent to
M is given by M1=(2Q ,{a,b},δ,[q0],F)
where, F consists of:
{[q3],[q0, q3],[q1, q3],[q2, q3],[q0, q1, q3],[q0, q2, q3],[q1, q2, q3],[q0, q1, q2, q3]}
and δ is defined by state table as under:

State Input
a b

[q0] [qo , q1] [q0]
[q0, q1] [q0, q1, q2] [q0, q1]

[q0, q1, q2] [q0, q1, q2, q3] [q0, q1, q3]
[q0, q1, q3] [q0, q1, q2] [q0, q1, q2]

[q0, q1, q2, q3]

[q0, q1, q2, q3] [q0, q1, q2, q3]
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Equivalence of DFA and NDFA

NDFA → DFA
1 Construct a DFA equivalent to NDFA ’M’ whose transition

diagram is given as:

2 Construct a DFA equivalent to NDFA with initial state q0
whose transition table is defined as
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Constructing required DFA

Constructing required DFA

Example 1

Construct a DFA accepting all strings ’w ’ over {0,1} such that the
number of 1’s in ’w ’ is 3mod4.

Solution: Let the required DFA, as the condition on strings of
T(M) doesn’t at all involve 0,
=⇒ M doesnot change the state on input 0.
If 1 appears in w (4k+3) times, M can come back to initial state,
after reading 4 1’s and to a final state after reading 3 1’s.
The required DFA:
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Constructing required DFA

Constructing required DFA

1 Construct a DFA accepting all strings over {a,b} ending in ab.

2 Construct a DFA equivalent to NDFA for:

State Input
0 1 ∧

→ q0 q0, q3 q0, q1
q1 q2
q2 q2 q2 q4
q3 q4
q4O q4 q4
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Constructing required DFA

Constructing required DFA

1 M=({q1, q2, q3},{0,1}, δ,q1,{q3}) is a NDFA where δ is given
by:
δ(q1, 0)={q2, q3}
δ(q1, 1)={q1}
δ(q2, 0)={q1, q2}
δ(q2, 1)=ϕ
δ(q3, 0)={q2}
δ(q3, 1)={q1, q2}
Construct equivalent DFA.
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Finite Automata with Output

Finite Automata with Outputs
Moore Machine is a 6-tuple (Q,Σ, ∆, δ, λ, q0)
where Q is a finite set of states

Σ is the input alphabet
∆ is the output alphabet
δ is the transition function Q × Σ into Q
λ is the output function Q into ∆
q0 is the initial state

Example:
Initial state q0 is marked with an arrow. The table defines δ and λ:

Present Next State Output
State a=0 a=1 λ
→ q0O q3 q1 0
q1 q1 q2 1
q2 q2 q3 0
q3 q3 q0 0

Determine transition states and output string for input string 0111.
Solution: Transition states:

q0
0\0−−→ q3

1\0−−→ q0
1\0−−→ q1

1\1−−→ q2 0
OutputString: 00010
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Finite Automata with Output

Finite Automata with Outputs
Mealy Machine is a 6-tuple (Q,Σ, ∆, δ, λ, q0)
where Q is a finite set of states

Σ is the input alphabet
∆ is the output alphabet
δ is the transition function Q × Σ into Q
λ is the output function mapping Q ×Σ into ∆
q0 is the initial state

Example:
Consider a mealy machine for q1 as initial state.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

Determine the transition of states and corresponding output string for input string
0011.

Solution: q1
0\0−−→ q3

0\1−−→ q2
1\0−−→ q4

1\0−−→ q3
Output String: 0100
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Transforming Mealy machine into Moore machine

Procedure of transforming Mealy machine into Moore machine

Consider the mealy machie described by given transition table. Construct a
moore machine which is equivalent to given mealy machine.

Present a=0 a=1
State State Output State Output
→ q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

Solution:

q2

q20

q21

q4

q40

q41

Present a=0 a=1
State State Output State Output
→ q1
q20
q21
q3
q40
q41
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Transforming Mealy machine into Moore machine

Procedure of transforming Mealy machine into Moore machine

Convert the given mealy machine into equivalent moore machine
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Transforming Mealy machine into Moore machine

Procedure of transforming Mealy machine into Moore machine

Present a=0 a=1
State state Output State Output
→ q1 q2 Z1 q3 Z1

q2 q2 Z2 q3 Z1

q3 q2 Z1 q3 Z2

q2

q21

q22

q3

q31

q32

Present a=0 a=1
State state Output State Output
q1 q21 Z1 q31 Z1

q21 q22 Z2 q31 Z1

q22 q22 Z2 q31 Z1

q31 q21 Z1 q32 Z2

q32 q21 Z1 q32 Z2
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Transforming Mealy machine into Moore machine

Procedure of transforming Mealy machine into
Moore machine

Present Next State Output
State a=0 a=1
q1 q21 q31
q21 q22 q31 Z1

q22 q22 q31 Z2

q31 q21 q32 Z1

q32 q21 q32 Z2
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Transforming Moore machine into Mealy machine

Procedure of transforming Moore machine into Mealy machine

Consider the moore machine described by the transition table given:

Present Next State Output
State a=0 a=1
→ q1 q1 q2 0
q2 q1 q3 0
q3 q1 q3 1

Construct the corresponding mealy machine.

Solution:

Present a=0 a=1
State state Output State Output
→ q1 q1 0 q2 0
q2 q1 0 q3 1
q3 q1 0 q3 1

Now, Find identical rows and remove one of them

Present a=0 a=1
State state Output State Output
→ q1 q1 0 q2 0
q2 q1 0 q2 1
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Minimization of Finite Automata

Minimization of Finite Automata
Equivalence: Two states q1 and q2 are equivalent(denoted by
q1 ≡ q2), if both δ(q1, x) and δ(q2, x) are final states or both
of them are non-final states for all x ∈ Σ∗.

Precisely, Two states q1 and q2 are k-equivalent (k ≥ 0), if
both δ(q1, x) and δ(q2, x) are final states or both non-final
states for all string x of length k or less.
If δ(q1,w) and δ(q2,w) are equivalent then

for |w |= 0, the states are 0-equivalent.
for |w |= 1, the states are 1-equivalent.
for |w |= 2, the states are 2-equivalent.
.
..
for |w |= n, the states are n-equivalent.

Properties of Equivalence relations:
If a relation is equivalence or k-equivalence, then they are reflexive,
symmetric and transitive.
If q1 and q2 are k-equivalent for all k ≥ 0, then they are equivalent.
If q1 and q2 are (k+1)-equivalent, then they are k-equivalent.
πn=πn+1 for some n
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for |w |= 2, the states are 2-equivalent.
.
..
for |w |= n, the states are n-equivalent.

Properties of Equivalence relations:
If a relation is equivalence or k-equivalence, then they are reflexive,
symmetric and transitive.
If q1 and q2 are k-equivalent for all k ≥ 0, then they are equivalent.
If q1 and q2 are (k+1)-equivalent, then they are k-equivalent.
πn=πn+1 for some n
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Minimization of Finite Automata

Minimization of Finite Automata

Construct a minimum state automaton equivalent to the given
finite automaton

Solution:

1 Draw transition table
State \Σ 0 1
→ q0 q1 q5
q1 q6 q2
q2O q0 q2
q3 q2 q6
q4 q7 q5
q5 q2 q6
q6 q6 q4
q7 q6 q2
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Minimization of Finite Automata

Minimization of Finite Automata

2 Find 0-equivalent set
π0=[q0, q1, q3, q4, q5, q6, q7][q2]

3 Find 1-equivalent set
π1=[q0, q6, q4][q1, q7][q5, q3][q2]

4 find 2-equivalent set
π2=[q0, q4][q6][q2][q1, q7][q3, q5]

5 find 3-equivalent set
π3=[q0, q4][q6][q2][q1, q7][q3, q5]

Therefore, M’=(Q’,{ 0,1 } ,δ,q′0,F’)
where Q’={[q2],[q0, q4],[q6],[q1, q7],[q3, q5]}
q′0=[q0, q4], F’=[q2]

State \Σ 0 1
[q0, q4] [q1, q7] [q3, q5]
[q1, q7] [q6] [q2]
[q2] [q0, q4] [q2]

[q3, q5] [q2] [q6]
[q6] [q6] [q0, q4]
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Minimization of Finite Automata

Minimization of Finite Automata

Construct a minimum state automaton equivalent to the given
finite automaton

Solution:
State \Σ a b
→ q0 q1 q0
q1 q0 q2
q2 q3 q1
q3O q3 q0
q4 q3 q5
q5 q6 q4
q6 q5 q6
q7 q6 q3
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Minimization of Finite Automata

Minimization of Finite Automata

π0={{q3}{q0, q1, q2, q4, q5, q6, q7}}
π1={{q3}{q0, q1, q5, q6}{q2, q4},{q7}}
π2={{q3}{q0, q6}{q1, q5}{q2, q4}{q7}}
π3={{q3}{q0, q6}{q1, q5}{q2, q4}{q7}}

∴ Q’= {{q3}{q0, q6}{q1, q5}{q2, q4}{q7}}
q′0={q0, q6}
F’={q3}
Now, make δ′ and transition diagram.
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Minimization of Finite Automata

Minimization of Finite Automata

Construct minimum state automaton equivalent to given
automata M:

State \Σ a b

→ q0 q0 q3
q1 q2 q5
q2 q3 q4
q3 q0 q5
q4 q0 q6
q5 q1 q4
q6O q1 q3
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Formal Grammar

Language: Introduction

Language

Formal (Syntactic Languages)
Informal (Semantic Languages)

Alphabet
String A concatenation of finite symbols from the alphabet is called
a string.
Example: If Σ={a,b} then a, abab, aaabb,
abababababaaaaaaabaab, etc.
Empty String or Null String∧ or Λ or ϕ
=⇒ A string with no symbols

Words =⇒ strings belonging to some language
Example: If Σ={x} then a language L can be defined as
L={xn:n=1,2,3,....} or
L={x,xx,xxx,....}
Here, x, xx, xxx ,.... are the words of L.

All words are strings but not all strings are words.
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Formal Grammar

Language: Introduction

Length of String: |S| =⇒ number of letters in the string.
Example: Σ={a,b}
If S= ababa, then |S|=5

Reverse of String: S r =⇒ Obtained by writing letters of ’S’
in reverse order.

Example:
If s=abc over Σ={a,b,c}
Then, Rev(s) or s r=cba
Σ={B,aB,bab,d}
s=BaBbabBd
s r=dBbabaBB

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 56/131



Formal Grammar

Language: Introduction

Length of String: |S| =⇒ number of letters in the string.
Example: Σ={a,b}
If S= ababa, then |S|=5

Reverse of String: S r =⇒ Obtained by writing letters of ’S’
in reverse order.
Example:

If s=abc over Σ={a,b,c}

Then, Rev(s) or s r=cba
Σ={B,aB,bab,d}
s=BaBbabBd
s r=dBbabaBB

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 56/131



Formal Grammar

Language: Introduction

Length of String: |S| =⇒ number of letters in the string.
Example: Σ={a,b}
If S= ababa, then |S|=5

Reverse of String: S r =⇒ Obtained by writing letters of ’S’
in reverse order.
Example:

If s=abc over Σ={a,b,c}
Then, Rev(s) or s r=cba

Σ={B,aB,bab,d}
s=BaBbabBd
s r=dBbabaBB

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 56/131



Formal Grammar

Language: Introduction

Length of String: |S| =⇒ number of letters in the string.
Example: Σ={a,b}
If S= ababa, then |S|=5

Reverse of String: S r =⇒ Obtained by writing letters of ’S’
in reverse order.
Example:

If s=abc over Σ={a,b,c}
Then, Rev(s) or s r=cba
Σ={B,aB,bab,d}
s=BaBbabBd

s r=dBbabaBB

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 56/131



Formal Grammar

Language: Introduction

Length of String: |S| =⇒ number of letters in the string.
Example: Σ={a,b}
If S= ababa, then |S|=5

Reverse of String: S r =⇒ Obtained by writing letters of ’S’
in reverse order.
Example:

If s=abc over Σ={a,b,c}
Then, Rev(s) or s r=cba
Σ={B,aB,bab,d}
s=BaBbabBd
s r=dBbabaBB

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 56/131



Formal Grammar

Language: Definition

Descriptive Definition

Recursive Definition

Using Regular Expression

Using Finite Automata, etc.
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Formal Grammar

Descriptive definition of Language
The language is defined describing the conditions imposed on its words.

Example:

1 The language L of strings of odd length, defined over Σ={a}
=⇒ L={a, aaa,aaaaa, ....}

2 The language L of strings that doesnot start with ’a’ defined over Σ={a,b,c}
=⇒ L={b,c,ba, bb,bc,ca,cb,cc}

3 The language L of strings of length 2 over Σ={0,1,2}
=⇒ L={00,01,02,10,22,12,...}

4 The language L of strings ending in 0 over Σ={0,1}
L={0,00,10,000,010,100,...}

5 The language L of Strings with number of ”a”(s) equal to number of ”b”(s)
over Σ={a,b}
L={∧, ab,aabb,abab,baba,abba,....}

6 Language Even-Even of string with even number of a(s) and even number of
b(s) over Σ={a,b}
L={∧, aa,bb,aaaa,aabb,abab,...}

7 Language Integer of strings over Σ=-,0,1,2,3,4,5,6,7,8,9
L={......, -2,-1,0,1,2,....}

8 Language {anbn} over Σ={a,b} or {anbn:n=1,2,3,....}
L={ab,aabb,aaabbb, ....}

9 Palindrome over Σ={a,b}
L={∧, a,b, aa,bb, aaa,aba,bab,bbb,....}
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Formal Grammar

GRAMMAR
A grammar is (VN ,Σ, P,S)
where VN is a non-empty set whose elements are called
variables.
Σ finite non-empty set whose elements are called terminals.
S is aspecial symbol called Start Symbol.
P are set of Production rules.
VN ∩ Σ = ϕ

Example
G={VN ,Σ,P, S} is a Grammar, where
VN={<sentence>,<noun>,<verb>,<adverb>}, Σ={Ram,Sam,ran,sang,fast},
S=<sentence>
P consists of following productions:
<sentence>→<noun><verb>
<sentence>→<noun><verb><adverb>
<noun>→ Ram
<noun>→ Sam
<verb>→ ran
<verb>→ sang
<adverb>→ fast
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Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).

Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}

If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.

Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).

Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)

S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)

=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

If G=({S},{0,1},{S→ 0S1,S→ ∧},S). Find L(G).
Solution: S→0S1 → 00S11 → 000S111.....0nS1n

0n∧1n = 0n1n ∈ L(G) for n ≥ 0
∴ L(G)={0n1n |n ≥ 0}
If G=({S},{a},{S → SS},S), Find the language generated by
G.
Solution: L(G)=ϕ

Let G=({S,C},{a,b},P,S), where P consists of S
→ aCa,C → aCa |b. Find L(G).
Solution: S =⇒ aCa =⇒ aba . So, aba ∈ L(G)
S =⇒ aCa (using S→ aCa)
=⇒ anCan (using S→ aCa (n-1) times)
=⇒ anban (using C → b)
Hence, anban ∈ L(G), where n≥ 1
∴ L(G)={anban |n ≥ 1}

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 60/131



Formal Grammar

Grammar

Exercise

Construct a grammar G so that L(G) = {anbam |n, m ≥ 1}

If G is S → aS |bS |a |b, Find L(G).
Solution: L(G)={a, b}+

Exercise 1

If G is S → aS |a, then show that L(G)={a}+

Let L be the set of all palindromes over {a,b}. Construct a
grammar G generating L.
Solution: ∧, a, b, or axa and bxb are palindromes.
∴ P consists of
S → ∧
S → a, S → b
S → aSa, S → bSb
Thus, G=({S},{a,b},P,S)
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Formal Grammar

Grammar

Construct a Grammar generating L={wcwT |w ∈ {a, b}∗}

Solution: Let G=({S},{a,b,c},P,S)
where P is defined as
S → aSa |bSb |c
Find a grammar generating L={anbnc i |n ≥ 1, i ≥ 0}
Solution: L=L1 ∪ L2, L1={anbn |n ≥ 1}
L2={anbnc i |n ≥ 1, i ≥ 1}
Let ”P” be as follows:
S → A
A → ab |aAb
S → Sc
Let G=({S,A}, {a,b,c}, P,S) for n ≥ 1, i ≥ 0

S
∗−→ Sc i → Ac i → an−1Abn−1c i → an−1abbn−1c i = anbnc i

L(G)={anbnc i |n ≥ 1, i ≥ 0}
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Formal Grammar

Grammar

Find a grammar generating
{ajbncn |n ≥ 1, j ≥ 0 }

Solution: Let G=({S,A},{a,b,c},P,S)
where ”P” consists of:
S → aS |A
A → bAc |bc
Let G =({S,A},{0,1,2},P,S) where P consists of
S → 0SA2 |S → 012
2A → A2
1A → 11. Show that L(G)={0n1n2n |n ≥ 1}
Solution: S

∗−→ 0n−1S(A2)n−1 by applying S → 0SA2 (n-1)
times
→ 0n12(A2)n−1 by applying S → 012
∗−→ 0n1An−12n by applying 2A → A2 several times
∗−→ 0n1n2n by applying 1A → 11 (n-1 times)
∴ 0n1n2n ∈ L(G) for all n ≥ 1
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Formal Grammar

Grammar

Construct grammar G generating {anbncn |n ≥ 1}

Solution: G=({S,B,C},{a,b,c},P,S)
where P consists of: S → aSBC |aBC, CB → BC, aB → ab,
bB → bb, bC → bc, cC → cc
S =⇒ aBC =⇒ abC =⇒ abc

Construct a grammar G generating {xx |x ∈ {a, b}∗}
Solution: Let G is as follows: G=({S,D,E,F,A,B},{a,b},P,S)
where P consists of :
S → DEF
DE → aDA, DE → bDB
AF → EaF, BF → EbF
Aa → aA, Ab → bA, Ba → aB, Bb→bB
aE → Ea, bE→ Eb
DE → ∧, F → ∧
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Formal Grammar

Grammar

Let G=({S,A,B},{a,b},P,S) where P consists of
S → aABa, A → baABb, B → Aab, aA → baa, bBb → abab.
Test whether w = baabbabaaabbaba is in L(G).

Solution: S→ aABa
=⇒ baaBa
=⇒ baaAaba
=⇒ baabaABbaba
=⇒ baabbaaBbaba
=⇒ baabbaaAabbaba
=⇒ baabbabaaabbaba=w

∴ w ∈ L(G)

If the grammar G is given by the productions S → aSa |bSb
|aa |bb |∧, show that:

L(G) has no strings of odd length
Any string in L(G) is of length 2n, n ≥ 0
The number of strings of length 2n is 2n
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Chomsky Classification of Languages

Chomsky Classification of Languages

Chomsky classified grammar into 4 types i.e. (type 0-3)

A type 0 grammar is any phrase structure grammar without
any restrictions
=⇒ All grammar we have considered till now are type 0
grammar

In a production of form ϕAψ → ϕαψ
Example:

abAbcd → abABbcd
ϕ =⇒ ab
α =⇒ AB
ψ =⇒ bcd
AC → A
ϕ =⇒ A
α =⇒ ∧
ψ =⇒ ∧
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Chomsky Classification of Languages

Chomsky Classification of Languages

C → ∧
ϕ =⇒ ∧
α =⇒ ∧
ψ =⇒ ∧
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Chomsky Classification of Languages

Chomsky Classification of Languages

A production of the form ϕA ψ → ϕαψ is called Type-1
production or Context-sensitive Language, if α ̸= ∧
=⇒ In type-1 production erasing ’A’ is not allowed

Example:
aAbCD → abcDbcD is a type 1 production.
A is replaced by bcD ̸= ∧
AB → AbBc is a type 1 production.
A → abA is a type 1 production.

A grammar is called type 1 or Context sensitive or
Context-dependent if all its productions are type 1
productions.

The production S → ∧ is also allowed in type 1 grammar, but
in this case S does not appear on the right-hand side of any
production.

The language generated by a type-1 grammar is called a
type-1 or context-sensitive language
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Chomsky Classification of Languages

Chomsky Classification of Languages

A grammar G= (VN , Σ,P,S) is monotonic (or
length-increasing) if every production in P is of the form
α→ β with |α |≤ |β |or S → ∧. In second case, S does not
appear on right-hand side of any production in P.

Type-2: Context free Grammar generates context free
language

A Type-2 production is a production of the form A → α
where A ∈ VN and α ∈ (VN ∨ Σ)∗

In other words, in Type-2 =⇒
It should be in Type-1
L.H.S. production should have only 1 variable i.e. |A |= 1 and there
is no restriction on α
Example: S → Aa, A →a, B → abc, A → ∧ are type-2 productions.
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Chomsky Classification of Languages

Chomsky Classification of Languages

A production of the form A → a or A → aB, where A,B ∈ VN

and a∈ Σ is called a type-3 production.

A grammar is called a type-3 or Regular Grammar if all its
productions are type-3 productions.

A production S → ∧ is allowed in type-3 grammar, but in this
case S does not appear on the right-hand side of any
production
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Chomsky Classification of Languages

Chomsky Classification of Languages

1 Find the highest type number which can be applied to the
following productions:

S → Aa, A → c |Ba, B → abc
S → ASB |d, A → aA
S → aS |ab

2 Differentiate between Recursive Set and Recursively
Enumerable Set

3 Prove that Context-sensitive language is recursive.

4 Prove that there exists a recursive set which is not a
contxt-sensitive language over {0,1}.

5 Let G=({A,B,S},{0,1},P.S) where P consists of S → 0AB, A0
→ S0B, A1 →SB1, B →SA, B →01. Show that L(G)= ϕ.

6 Find the language generated by grammar S → AB, A →A1 |0,
B → 2B |3. Can the above language be generated by a
grammar of higher type?
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Chomsky Classification of Languages

Chomsky Classification of Languages

7 Construct a grammar which generates all even integer upto
998.

8 Construct CFG to generate the following:
{0m1n |m ̸=n, m,n ≥1}
{albmcn|one of l,m,n equals 1 and remaining tqo are equal}
{albmcn |l+m=n}
The set of all strings over {0,1} containing twice as many 0’s and
1’s

9 Show that G1=({S},{a,b},P1,S) where P1={S → aSb |ab} is
equivalent to G2=({S,A,B,C},{a,b},P2,S), where P2 consists
of S →AC, C→SB, S →AB, A→a,B →b

10 What are the applications of different grammar types?
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Regular Expression

Regular Expression

A language is regular if there exists a finite acceptor for it
∴ Every regular language can be described as DFA or NDFA

Regular Expression: Algebraic description of languages

Let Σ be a given alphabet, then:
1 ϕ,∧ and a ∈ Σ are all regular expressions, called Primitive regular

expressions.
2 If R1 and R2 are regular expressions, so are R1 + R2,R1.R2,R1

∗ and
(R1)

3 A string is a regular expression if and only if it can be derived from
primitive regular expressions by a finite number of applications of
the rules in (2)

Example: For Σ={a,b,c}, the string (a+ b.c)∗.(c + ϕ) is a
regular expression
while (a+ b+) is not a regular expression.
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Regular Language

Language Associated with Regular Expression

The language L(R) denoted by any regular expression ’R’ is defined
by following rules

1 ϕ is a R.E. denoting empty set

2 ∧ is a R.E. denoting {∧}
3 For every a ∈ Σ, a is a R.E. denoting {a}

If R1 and R2 are R.E. , then

4 L(R1+R2)=L(R1)∨L(R2)

5 L(R1.R2)=L(R1)L(R2)

6 L((R1))=L(R1)

7 L(R∗
1 )=(L(R1))

∗

Example: For Σ={a,b}, the expression
R=(a+ b)∗(a+bb) is regular
=⇒ L(R)={a,bb,aa,abb,ba,bbb,....}
=⇒ L(R) is the set of all strings on {a,b}, terminated by either
’a’ or ’bb’.
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Regular Language

Language Associated with Regular Expression

R=(aa)∗(bb)∗b

denotes the set of all strings with even number of a’s followed
by an odd number of b’s
L(R)={a2nb2m+1 |n≥0, m≥0}
For Σ ={0,1}. Give a regular expression ’R’ such that
L(R)={w∈ Σ∗|w has atleast one pair of consecutive zeroes}
Solution: R=(0 + 1)∗00(0 + 1)∗

Find R.E. for language
L={w ∈ {0, 1}∗ |w has no pair of consecutive zeroes}
Solution: R=(1 + 01)∗(0 + ∧)
R=(1∗011∗)∗(0 + ∧) + 1∗(0 + ∧)
Find all strings in L((a+ b)∗b(a+ ab)∗) of length less than 4

Find R.E. for set {anbm:(n+m) is even}
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Identities for Regular Expression

Identities for Regular Expression

1 ϕ + R = R

2 ϕR = R ϕ = ϕ

3 ΛR = RΛ =R

4 Λ∗ = Λ and ϕ∗ = Λ

5 R + R = R

6 R∗R∗ = R∗

7 RR∗ = R∗R

8 (R∗)∗ = R∗

9 Λ + RR∗ = R∗ = Λ + R∗R

10 (PQ)∗P = P(QP)∗

11 (P + Q)∗ = (P∗Q∗)∗ =(P∗ + Q∗)∗

12 (P + Q)R = PR + QR and R(P + Q) = RP + RQ
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NFA with null moves

ϵ-NFA
=⇒ Moving without reading a symbol from Input Tape.

State/Input 0 1 ϵ
A B,C A B
B - B C
C C C -

Epsilon Closure
ϵ-closure for a given state X is a set of States which can be
reached from states X with only (null) or ϵ moves including the
state X itself.
Example: ϵ closure (A)={A,B,C}
ϵ closure (B)={B,C}
ϵ closure (C)={C}
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Automata and Regular Expression

Automata and Regular Expression

Automaton for L(R1 + R2)
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Automata and Regular Expression

Automata and Regular Expression

Automaton for L(R1.R2)
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Automata and Regular Expression

Automata and Regular Expression

Automaton for L(R1
∗)
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Automata and Regular Expression

Automata and Regular Expression
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Automata and Regular Expression

Automata and Regular Expression

Generalized Transition Graph: A transition graph whose edges
are labelled as R.E.

Example: L(R)=(a∗ + a∗(a+ b)c∗)
Equivalence of Generalized Transition Graph:
Let R be a regular expression. Then, there exists some NFA
that accepts L(R). Consequently, L(R) is a regular language.
Find NDFA which accepts L(R) where R=(a+ bb)∗(ba∗ + Λ)
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Automata and Regular Expression

Automata and Regular Expression

The Strings denoted by such regular expressions are a subset
of the language accepted by GTG, with full language being
the union of all such generated subsets

Example: The language accepted by the following GTG is

L(a∗ + a∗(a+ b)c∗)
State Elimination method

Arden’s Theorem
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State Elimination method

Automata and Regular Expression

State Elimination method

1 Initial State should not have any incoming edge

2 Final State should not have any outgoing edge

3 Only 1 final state

4 Eliminate each non-initial/final vertex one by one
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State Elimination method

State Elimination Method
1. Find R.E. for given DFA
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State Elimination method

State Elimination Method
2. Find R.E. for given DFA
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State Elimination method

State Elimination Method

1 Find R.E. for the given DFA

2 Find R.E. for the given DFA
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State Elimination method

State Elimination Method

1 Find R.E. for the given DFA

2 Find R.E. for the given DFA
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Elimination of ϵ moves

Elimination of ϵ/∧ moves

Suppose we want to replace a ∧-move from vertex v1 to vertex v2
Then proceed as follows:

1 Find all the edges starting from v2

2 Duplicate all these edges starting from v1, without changing
the edge labels.

3 If v1 is an initial state, make v2 also as initial state

4 If v2 is a final state. make v1 also as the final state
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Elimination of ϵ moves

Elimination of ϵ/∧ moves

Example:
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Elimination of ϵ moves

Elimination of ϵ/∧ moves

Example:
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Conversion of null moves NFA to DFA

Conversion of ϵ-NFA to DFA

Steps:

1 Take ϵ closure of initial state as beginning state

2 Find states that can be traversed from present state for each
input symbol

3 If any new state is found, repeat step 2 till we get no new
state in the transition table.

4 Mark states containing final states as new final state.

State/Input 0 1
{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}
{C} {C} {C}

Now, create transition diagram
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Arden’s Theorem

Arden’s Theorem

Let P and Q be two regular expressions over Σ. If P does not
contain Λ, then the following equation in R i.e. R=Q+RP has a
unique solution R=QP∗

Proof:
R = Q + RP (1)

putting ”R=Q+RP” in equation 1
R=Q+QP+RPP
putting R recursively again and again
we get:
R=Q+QP+QP2+QP3+ . . .
R= Q (Λ + P + P2 + P3 + . . .)
R=QP∗
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Arden’s Theorem

Arden’s Theorem

Assumptions:

The transition diagram must not have null transitions.

It must only 1 initial state, let v1

Its vertices are v1, . . . , vn.

Vi , the R.E. represents the set of strings accepted by the
system even though vi , is a final state.

αij denotes the R.E. representing the set of labels of edges
from vi to vj . When there is no such edge, αij = ϕ.
Consequently, we can get the following set of equations in
V1, . . . ,Vn:
V1 = V1α11 + V2α21 + · · ·+ Vnαn1 + ∧
V2 = V1α12 + V2α22 + · · ·+ Vnαn2
...
Vn = V1α1n + V2α2n + · · ·+ Vnαnn
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Arden’s Theorem

Arden’s Theorem

By repeatedly applying substitutions and Arden’s theorem, we
can express Vi in terms of αij .

For getting the set of strings recognized by the transition
system, we have to take the ”union” of all Vi corresponding
to final states
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Arden’s Theorem

Arden’s Theorem

1. Find R.E. for the following DFA

q1 = q10 + q30 + ∧ (2)

q2 = q11 + q21 + q31 (3)

q3 = q20 (4)

putting equation 4 in equation 3

q2 = q11 + q21 + q31

= q11 + q21 + (q20)1

= q11 + q2(1 + 01)
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Arden’s Theorem

Arden’s Theorem

Applying Arden’s Theorem

q2 = q11(1 + 01)∗ (5)

putting 5 in equation 2

q1 = q10 + q30 + ∧
= q10 + q200 + ∧

= q10 + (q11(1 + 01)∗00) + ∧
q1(0 + 1(1 + 01)∗00) + ∧

using arden’s theorem again

q1 = ∧(0 + 1(1 + 01)∗00)
∗

(0 + 1(1 + 01)∗00)
∗

As q1 is the final state. ∴ r= (0 + 1(1 + 01)∗00)
∗
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Arden’s Theorem

Arden’s Theorem

Consider the transition system below. Prove that the strings
recognized are (a+ a(b + aa)∗b)

∗
a(b + aa)∗a
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Arden’s Theorem

Arden’s Theorem

Consider the transition system below. Prove that the strings
recognized are (a+ a(b + aa)∗b)

∗
a(b + aa)∗a

Solution:

q1 = q1a+ q2b + ∧ (6)

q2 = q1a+ q2b + q3a (7)

q3 = q2a (8)
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Arden’s Theorem

Arden’s Theorem

Putting equation 8 in equation 7

q2 = q1a+ q2b + q2aa

q2 = q1a+ q2(b + aa)

q2 = q1a(b + aa)∗

Now putting q2 in equation 6

q1 = q1a+ q2b + ∧
= q1a+ q1a(b + aa)∗b + ∧
= q1(a+ a(b + aa)∗b) + ∧

= ∧(a+ a(b + aa)∗b)
∗

= (a+ a(b + aa)∗b)
∗

putting this in q2

Dr. A K Yadav Formal Languages, Regular Sets and Regular Grammars April 28, 2022 103/131



Arden’s Theorem

Arden’s Theorem

q2 = (a+ a(b + aa)∗b)
∗
a+ q2b + q2aa

= (a+ a(b + aa)∗b)
∗
a+ q2(b + aa)

= (a+ a(b + aa)∗b)
∗
a(b + aa)∗

putting q2 in q3

q3 = (a+ a(b + aa)∗b)
∗
a(b + aa)∗a (9)

Since q3 is the final state.
∴ r= (a+ a(b + aa)∗b)

∗
a(b + aa)∗a
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Arden’s Theorem

Arden’s Theorem

Prove that the finite automaton whose transition diagram
below accepts the set of all strings over alphabet {a,b} with
an equal number of a’s and b’s, such that each prefix has
atmost has atmost one more a than the b’s and atmost one
more b than the a’s
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Arden’s Theorem

Arden’s Theorem

Solution:

q1 = q2b + q3a+ ∧ (10)

q2 = q1a (11)

q3 = q1b (12)

q4 = q2a+ q3b + q4a+ q4b (13)

putting q2 and q3 in q1

q1 = q1ab + q1ba+ ∧
q1 = q1(ab + ba) + ∧

applying Arden’s theorem

q1 = ∧(ab + ba)∗

q1 = (ab + ba)∗
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Arden’s Theorem

Arden’s Theorem

Now, the prefix can be even or odd in length. For Prefix x of
even length, the number of a’s and b’s shall be equal as x is a
substring formed by ab’s and ba’s. For prefix x of odd length,
then we can write ’x’ as ya or yb. As y has even number of
symbols, which implies x has one more a than b or vice-versa
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Arden’s Theorem

Arden’s Theorem

Describe in English the set accepted by finite automaton
whose transition diagram is as under:
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Arden’s Theorem

Arden’s Theorem

Construct a regular expression corresponding to the state
diagram described as under:

Give R.E. for representing the set L of strings in which every 0
is immediately followed by atleast two 1’s. Prove that R.E. r=
∧+1∗(011)∗(1∗(011)∗)

∗
also describes the same set of strings.

Prove
(1+00∗1)+(1+00∗1)(0 + 10∗1)∗(0+10∗1) = 0∗1(0 + 10∗1)∗
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Conversion of RE to DFA

Construction of FA equivalent to given RE

The method for constructing a finite automaton equivalent to a
given regular expression is called the subset method which involves
four steps.

1. Construct a transition system equivalent to the given regular
expression using ∧-moves.

2. Construct the transition table for the transition graph
obtained in step 1.

3. Construct the DFA equivalent to NDFA.

4. Reduce the number of states if possible.

Construct FA equivalent to Regular Expression.
(0 + 1)∗(00 + 11)(0 + 1)∗

Solution:
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Conversion of RE to DFA

Construction of FA equivalent to given RE
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Conversion of RE to DFA

Construction of FA equivalent to given RE

State/Σ 0 1
q0 q0, q3 q0, q4
q3 qf
q4 qf
qf qf qf

converting to DFA
State/Σ 0 1
q0 q0, q3 q0, q4
q0, q3 q0, q3, qf q0, q4
q0, q4 q0, q3 q0, q4, qf
q0, q3, qf q0, q3, qf q0, q4, qf
q0, q4, qf q0, q3, qf q0, q4, qf

reducing
State/Σ 0 1
q0 q0, q3 q0, q4
q0, q3 q0, q3, qf q0, q4
q0, q4 q0, q3 q0, q3, qf
q0, q3, qf q0, q3, qf q0, q3, qf
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Conversion of RE to DFA

Construction of FA equivalent to given RE

1 Construct DFA with reduced states equivalent to R.E.
(10+(0+11)0∗1).

2 Construct transition system equivalent to R.E.
(ab + c∗)∗b
a+ bb + bab∗a
(a+ b)∗abb

3 Prove that
(a∗ab + ba)∗a∗ = (a+ ab + ba)∗

4 Construct a finite automata accepting all strings over {0,1}
ending in 010 or 0010.

5 Construct a regular grammar which can generate the set of all
strings starting with a letter (A to Z) followed by a string of
letters or digits (0 to 9).
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Two way finite automata

2-way DFA

2-way DFA allows the read head to move left or right on the
input

Two end-markers

Needs only 1 accept or reject state.

A tuple M = {Q, Σ, ⊢, ⊣, δ, s, t, r }
where Q is the set of states
Σ is the input alphabet set
⊢ is the left end marker
⊣ is the right end marker
δ is Q × (Σ ∪ {⊢,⊣}) → Q × {L,R}
s is start state
t is the accept state
r is reject state such that r ̸= t
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Two way finite automata

2-Way DFA

Determine the acceptability of 101001 for the following:
State/ Σ 0 1

→ q0 (q0,R) (q1, R)
q1 (q1,R) (q2, L)
q2 (q0,R) (q2, L)

where Q={q0, q1, q2}, s=q0, t=q1, r=q2
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Pumping Lemma for Regular Sets

Pumping Lemma for Regular Sets

Let M = (Q, Σ, δ, q0, F) be a finite automaton with ’n’
states. Let L be the regular sets accepted by M.

Let w ∈ L and |w |≥ n, then ∃ x,y,z such that w=xyz, y ̸= ∧
and xy iz ∈ L for each i ≥ 0.

Applications of Pumping Lemma: Used to prove that
certain set are not regular.

Steps to prove that given set is not regular:
1 Assume L is regular. Let ’n’ be the number of states in

corresponding FA.
2 Choose a string ’w’ such that |w |≥ n. Use pumping lemma to write

w=xyz with |xy |≤ n and |y |> 0
3 Fing a suitable integer i such that xy iz ̸∈ L. This contradicts our

assumption. Hence, L is not regular.
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Pumping Lemma for Regular Sets

Pumping Lemma for Regular Sets

Show that the set L ={ai 2 |i ≤ 1} is not regular
Solution:

Let L is regular
Let ’n’ be number of states in FA accepting L.

Let w=an2 =⇒ |w |= n2 > n
by pumping lemma, w=xyz with |xy |≤ n and |y |> 0

Consider xy2z
|xy2z |= |x |+ 2 |y |+ |z |> |x |+ |y |+ |z |∵ |y |> 0
=⇒ n2 = |xyz |= |x |+ |y |+ |z |< |xy2z |
As |xy |≤ n, |y |≤ n

∴ |xy2z |= |x |+ 2 |y |+ |z |≤ n2 + n < n2 + n + n + 1.
Hence, |xy2z |lies between n2 and (n + 1)2 but not equal to
any one of them.
∴ |xy2z |is not a perfect square and so xy2z ̸∈ L.
∴ this is a contradiction. This implies not Regular
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Pumping Lemma for Regular Sets

Pumping Lemma for Regular Sets

Show that L= {ap |p is a prime} is not regular.
Solution:

1 Let L is regular. Let ’n’ be number of states in finite
automata accepting L.

2 Let ’p’ be a prime number greater than ’n’.
Let w=ap

by pumping lemma, w=xyz with |xy |≤ n and |y |> 0
x, y, z are simply strings of a’s.
So, y= am for some m ≥ 1 (and ≤ n)

3 Let i= p+1, then
|xy iz |= |xyz |+ |y i−1 |=p+(i-1)m=p+pm=p(1+m) which is
not prime.
∴ xy iz ̸∈ L. =⇒ contradiction.
So, L is not regular.
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Pumping Lemma for Regular Sets

Pumping Lemma for Regular Sets

1 Show that L={0i1i |i ≥ 1} is not regular.

2 Show that L= {ww |w ∈ {a, b}∗ } is not regular.

3 Is L = {a2n |n ≥ 1} regular ?
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Pumping Lemma for Regular Sets

Regular Sets and Regular Grammar

We can construct a Regular Grammar from a Regular Sets and vice
versa.
Construction of a Regular Grammar from a Regular Sets

We can show that L(G ) = T (M) by using the construction of
P such that:
Ai → aAj iff δ(qi , a) = qj
Ai → a iff δ(qi , a) ∈ F

Construct a regular grammar G generating the regular set
represented by
P= a∗b(a+ b)∗.
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Pumping Lemma for Regular Sets

Regular Sets and Regular Grammar

Solution:

Let G=({q0, q1},{a,b},P,q0)
where P is given by:
q0 → aq0
q0 → bq1, q0 → b
q1 → aq1, q1 → bq1
q1 → a, q1 → b
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Pumping Lemma for Regular Sets

Regular Sets and Regular Grammar

Construction of a Regular Set from a Regular Grammar

We define M as:
1. Each production Ai → aAj induces a transition from qi to
qj with label a i.e δ(qi , a) = qj ,
2. Each production Ai → a induces a transition from qi to qf
with label a i.e δ(qi , a) = qf ∈ F
3. S → ∧, corresponding transition is from q0 to qf with a
label ∧ or q0 is also a final state.

Let G=({A,B},{a,b},P,A) where P consists of
A → aB, B → bB
B → a, B → bA
Construct a transition system M accepting L(G).
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Pumping Lemma for Regular Sets

Regular Sets and Regular Grammar

If a regular grammar G is given by S → aS |a. Find M
accepting L(G).

Construct a DFA equivalent to grammar
S → aS |bS |aA
A → bB
B → aC, C → ∧
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Myhill-Nerode Theorem

Myhill Nerode Theorem

Myhill-Nerode Theorem-states that L can be accepted by an FA if
and only if the set of equivalence classes of IL is finite.
It also states that the number of states in the smallest automaton
accepting L is equal to the number of equivalence classes in RL.

It is used to prove whether or not a language L is regular

It is also used for minimization of states in DFA

Steps:
1 Draw a table for all unordered pair of states (P,Q).
2 Mark all pairs where P ∈ F and Q ̸∈ F.
3 If there are unmarked pairs (P,Q) such that [δ(P, a), δ(Q, a)] is

marked, then mark [P,Q], where a ∈
∑

is an input symbol.
4 Repeat step 3 untill no more marking can be made.
5 Combine all un-marked pairs and make them a single state in

minimized DFA.

Minimize the given deterministic finite automata
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Myhill-Nerode Theorem

Myhill Nerode Theorem

Solution:
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Myhill-Nerode Theorem

Myhill Nerode Theorem

(B,A) =⇒ δ(B, 0) = A
δ(A, 0) = B Unmarked
δ(B, 1) = D
δ(A, 1) = C unmarked

(D,C) =⇒ δ(D, 0) = E
δ(D, 0) = E Unmarked
δ(C , 1) = F
δ(C , 1) = F unmarked

(E,C) =⇒ δ(E , 0) = E
δ(C , 0) = E Unmarked
δ(E , 1) = F
δ(C , 1) = F unmarked

(E,D) =⇒ δ(E , 0) = E
δ(E , 0) = E Unmarked
δ(D, 1) = F
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Myhill-Nerode Theorem

Myhill Nerode Theorem

δ(D, 1) = F unmarked
(F,A) =⇒ δ(F , 0) = F

δ(A, 0) = B Unmarked
δ(F , 1) = F
δ(A, 1) = C Marked, Mark (F,A)

(F,B) =⇒ δ(F , 0) = F
δ(B, 0) = A Marked, Mark (F,B)
δ(F , 1) = F
δ(B, 1) = D Marked, Mark (F,B)
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Myhill-Nerode Theorem

Myhill Nerode Theorem

Therefore, unmarked pairs:
(A,B),(D,C),(E,C),(E,D)
here, (C,D,E) form a common pair. So, combined state
(C,D,E)

States 0 1
{A,B} {A,B} {C,D,E}
{C,D,E} {C,D,E} {F}
{F} {F} {F}
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Myhill-Nerode Theorem

Myhill Nerode Theorem
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Questions?
+91 9911375598, akyadav@akyadav.in



Thank you
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