Module 1: Introduction to Languages and Automata

Dr. A K Yadav

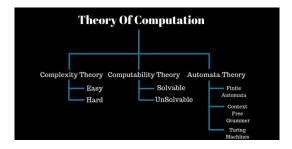
Outline

- 1 Introduction
- 2 Preliminaries
- 3 Mathematical Preliminaries
- 4 Finite Automaton
- 5 Non Deterministic Finite Automata
- 6 Equivalence of DFA and NDFA
- 7 Constructing required DFA
- 8 Finite Automata with Output
- 9 Transforming Mealy machine into Moore machine
- Transforming Moore machine into Mealy machine
- 11 Minimization of Finite Automata
- 12 Formal Grammar
- Chomsky Classification of Languages
- 14 Regular Expression
- 15 Regular Language
- 16 Identities for Regular Expression

- 17 NFA with null moves
- 18 Automata and Regular Expression
- 19 State Elimination method
- 20 Elimination of ϵ moves
- 21 Conversion of null moves NFA to DFA
- 22 Arden's Theorem
- 23 Conversion of RE to DFA
- 24 Two way finite automata
- 25 Pumping Lemma for Regular Sets
- 26 Myhill-Nerode Theorem

Theory of Computation: Introduction

- Theory of Computation is the branch of Computer Science which deals with how efficiently problems can be solved on model of computation using an algorithm
- The domain is further classified into 3 sub-domains:
 - Automata theory and languages
 - Computability theory
 - Complexity theory



Propositions (or Statements)

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)
 - NOT (Negation)¬P
 - AND (Conjunction) $P \wedge Q$
 - OR (Disjunction) $P \lor Q$
 - If.. Then... (Implication)
 - If and only If

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)
 - NOT (Negation)¬P
 - AND (Conjunction) $P \land Q$
 - OR (Disjunction) $P \lor Q$
 - If.. Then... (Implication)
 - If and only If
- Tautology- A tautology or a universally true formula is a well defined formula whose truth value is *T* for all possible assignments of truth values to the propositional variables.

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)
 - NOT (Negation)¬P
 - AND (Conjunction) $P \land Q$
 - OR (Disjunction) $P \lor Q$
 - If.. Then... (Implication)
 - If and only If
- Tautology- A tautology or a universally true formula is a well defined formula whose truth value is T for all possible assignments of truth values to the propositional variables. **Example-** $P \lor \neg P$

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)
 - NOT (Negation)¬P
 - AND (Conjunction) $P \wedge Q$
 - OR (Disjunction) $P \lor Q$
 - If.. Then... (Implication)
 - If and only If
- Tautology- A tautology or a universally true formula is a well defined formula whose truth value is T for all possible assignments of truth values to the propositional variables. **Example-** $P \lor \neg P$
- Contradiction- A contradiction (or absurdity) is well formed formula whose truth value is F for all possible assignments of truth values to propostion variables.

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)
 - NOT (Negation)¬P
 - AND (Conjunction) $P \land Q$
 - OR (Disjunction) $P \vee Q$
 - If.. Then... (Implication)
 - If and only If
- Tautology- A tautology or a universally true formula is a well defined formula whose truth value is T for all possible assignments of truth values to the propositional variables. Example- $P \vee \neg P$
- Contradiction- A contradiction (or absurdity) is well formed formula whose truth value is F for all possible assignments of truth values to propostion variables.
 - **Example-** $P \land \neg P$

- Propositions (or Statements)
- Connectives (Propositional connectives or Logical connectives)
 - NOT (Negation)¬P
 - AND (Conjunction) $P \wedge Q$
 - OR (Disjunction) $P \lor Q$
 - If.. Then... (Implication)
 - If and only If
- Tautology- A tautology or a universally true formula is a well defined formula whose truth value is T for all possible assignments of truth values to the propositional variables. **Example-** $P \lor \neg P$
- Contradiction- A contradiction (or absurdity) is well formed formula whose truth value is F for all possible assignments of truth values to propostion variables.
 Example-P ∧ ¬P
- Equivalence

■ Equivalence- Two well formed α and β in propositional variables P_1, P_2,P_n are equivalent (or logically equivalent) if the formula $\alpha \leftrightarrow \beta$ is a tautology.

■ Equivalence- Two well formed α and β in propositional variables P_1, P_2,P_n are equivalent (or logically equivalent) if the formula $\alpha \leftrightarrow \beta$ is a tautology.

Example

$$(P \implies (Q \lor R)) \equiv ((P \implies Q) \lor (P \implies R))$$

- Logical Identities
 - Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$

- Logical Identities
 - Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
 - Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$

- Logical Identities
 - Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
 - Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$
 - Associative laws- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ $P \land (Q \land R) \equiv (P \land Q) \land R$

Logical Identities

- Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
- Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$
- Associative laws- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$

$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$$

Distributive laws- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$

- Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
- Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$
- Associative laws- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ $P \land (Q \land R) \equiv (P \land Q) \land R$
- Distributive laws- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
- Absorption laws- $P \land (P \lor Q) \equiv P$ $P \lor (P \land Q) \equiv P$

Preliminaries

- Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
- Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$
- Associative laws- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ $P \land (Q \land R) \equiv (P \land Q) \land R$
 - Distributive laws- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
- $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ Absorption laws- $P \land (P \lor Q) \equiv P$
- Absorption laws- $P \land (P \lor Q) \equiv P$ $P \lor (P \land Q) \equiv P$
- De-morgan's Laws- $\neg(P \lor Q) \equiv \neg P \land \neg Q$ $\neg(P \land Q) \equiv \neg P \lor \neg Q$

Preliminaries

- Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
- Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$
- Associative laws- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ $P \land (Q \land R) \equiv (P \land Q) \land R$
- Distributive laws- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
- Absorption laws- $P \land (P \lor Q) \equiv P$ $P \lor (P \land Q) \equiv P$
- De-morgan's Laws- $\neg (P \lor Q) \equiv \neg P \land \neg Q$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- Contrapositive- $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$ $P \Rightarrow Q \equiv \neg P \lor Q$

Preliminaries

- Idempotent laws- $P \lor P \equiv P$, $P \land P \equiv P$
- Commutative laws- $P \lor Q \equiv Q \lor P$, $P \land Q \equiv Q \land P$
- Associative laws- $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ $P \land (Q \land R) \equiv (P \land Q) \land R$
- Distributive laws- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
- $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$
- Absorption laws- $P \land (P \lor Q) \equiv P$ $P \lor (P \land Q) \equiv P$
- De-morgan's Laws- $\neg (P \lor Q) \equiv \neg P \land \neg Q$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- Contrapositive- $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$ $P \Rightarrow Q \equiv \neg P \lor Q$
- Double negation- $P \equiv \neg(\neg P)$

Questions

Show that:

$$(P \wedge Q) \vee (P \wedge \neg Q) \equiv P$$

Questions

Show that:

$$(P \wedge Q) \vee (P \wedge \neg Q) \equiv P$$

Show that:

$$(P \implies Q) \land (R \implies Q) \equiv (P \lor R) \implies Q$$

- A set is well defined collection of objects.
 Example-Set of all students in ASET,
 Collection of all books in library.
- Individual objects are called Members or Elements of the set.
- Capital letter usually represent Set such as A,B,C,...
- Small letters represent Elements of any set such as a,b,c,....
- If a is an element of set $A \implies a \in A$

- A set is well defined collection of objects.
 Example-Set of all students in ASET,
 Collection of all books in library.
- Individual objects are called Members or Elements of the set.
- Capital letter usually represent Set such as A,B,C,...
- Small letters represent Elements of any set such as a,b,c,...
- If a is an element of set $A \implies a \in A$
- Ways of describing set
 - Listing its element with no repetition Example: {15, 30, 45, 60, 75, 90}

- A set is well defined collection of objects.
 Example-Set of all students in ASET,
 Collection of all books in library.
- Individual objects are called Members or Elements of the set.
- Capital letter usually represent Set such as *A*,*B*,*C*,...
- Small letters represent Elements of any set such as a,b,c,...
- If a is an element of set $A \implies a \in A$
- Ways of describing set
 - Listing its element with no repetition Example: {15, 30, 45, 60, 75, 90}
 - Describing properties of elements of set
 Example: {n | nisapositiveintegerdivisibleby15andlessthan100}

- A set is well defined collection of objects.
 Example-Set of all students in ASET,
 Collection of all books in library.
- Individual objects are called Members or Elements of the set.
- Capital letter usually represent Set such as A,B,C,...
- Small letters represent Elements of any set such as *a,b,c,....*
- If a is an element of set $A \implies a \in A$
- Ways of describing set
 - Listing its element with no repetition Example: {15, 30, 45, 60, 75, 90}
 - Describing properties of elements of set
 Example: {n | nisapositiveintegerdivisibleby15andlessthan100}
 - By recursion Example: Set of all natural numers leaving remainder 1 when divided by 3 can be written as $\{a_n \mid a_0 = 1, a_{n+1} = a_n + 3\}$

Subsets and Operations on Sets

- A set A is said to be subset of B i.e. $(A \subseteq B)$, if every element of A is also an element of B.
- If two sets A and B are equal i.e. (A = B) $\implies A \subseteq B$ and $B \subseteq A$.

Subsets and Operations on Sets

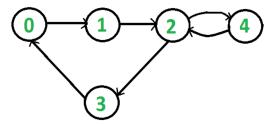
- A set A is said to be subset of B i.e. $(A \subseteq B)$, if every element of A is also an element of B.
- If two sets A and B are equal i.e. (A = B) $\implies A \subseteq B$ and $B \subseteq A$.
- Empty set: A set with no elements.

Subsets and Operations on Sets

- A set A is said to be subset of B i.e. $(A \subseteq B)$, if every element of A is also an element of B.
- If two sets A and B are equal i.e. (A = B) $\implies A \subseteq B$ and $B \subseteq A$.
- Empty set: A set with no elements.
- Operations on sets:
 - $A \cup B$: $\{x \mid x \in A \text{ or } x \in B\}$ called union of A and B.
 - $A \cap B$: $\{x \mid x \in A \text{ and } x \in B\}$ called intersection of A and B.
 - A B: $\{x \mid x \in A \text{ and } x \notin B\}$ called complement of B in A.

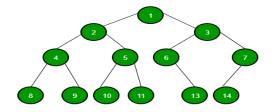
Graph

- A graph (or undirected graph) consists of:
 - \blacksquare a non-empty set V of **vertices**
 - a set *E* called set of **edges**.
 - \blacksquare a map ϕ which assigns to every edge a unique unordered pair of vertices.
- A directed graph or (digraph) consists of
 - lacksquare a non-empty set V of **vertices**
 - a set *E* called set of **edges**
 - lacksquare a map ϕ which assigns to every edge a unique ordered pair of vertices.



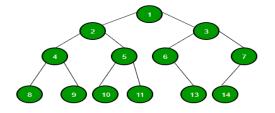
Tree

A graph is called a tree if it is connected and has no circuits



Tree

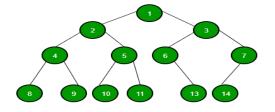
A graph is called a tree if it is connected and has no circuits



- Properties of tree:
 - A tree is connected **graph with no circuits** or loops

Tree

A graph is called a tree if it is connected and has no circuits

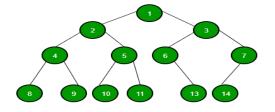


- Properties of tree:
 - A tree is connected **graph with no circuits** or loops
 - there is **one and only one path** between every pair of vertices.

Mathematical Preliminaries

Tree

A graph is called a tree if it is connected and has no circuits



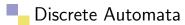
- Properties of tree:
 - A tree is connected **graph with no circuits** or loops
 - there is one and only one path between every pair of vertices.
 - if a connected graph has n vertices \implies has n-1 edges, implies a tree

Automata

- Automata is defined as a system where energy, material and information are transformed, transmitted and used for performing some function without direct human participation.
- Example: Automatic machine tools, automatic packing machines, automatic photoprinting machines

Figure 1: Automatic machine tools

Figure 2: Automatic photoprinting machine



Model of discrete automaton:

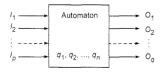


Figure 3: Model of a discrete automaton

Characteristics of Automata

Input-At a discrete instant of time t_1, t_2,t_m, input values $l_1, l_2....l_p$ take finite number of fixed values from input alphabet Σ are applied as input to model.

Discrete Automata

Model of discrete automaton:

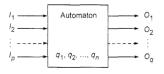
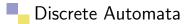


Figure 3: Model of a discrete automaton

Characteristics of Automata

- Input-At a discrete instant of time t_1, t_2,t_m, input values $l_1, l_2....l_p$ take finite number of fixed values from input alphabet Σ are applied as input to model.
- Output- $O_1, O_2, ... O_q$ are output of model, each of which can take finite number of fixed values from an Output.



Model of discrete automaton:

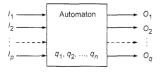
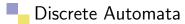


Figure 3: Model of a discrete automaton

Characteristics of Automata

- Input-At a discrete instant of time t_1, t_2,t_m, input values $l_1, l_2....l_p$ take finite number of fixed values from input alphabet Σ are applied as input to model.
- Output- $O_1, O_2, ... O_q$ are output of model, each of which can take finite number of fixed values from an Output.
- States- At any instant of time, the automaton can be in one of the states $q_1, q_2, ...q_n$



Model of discrete automaton:

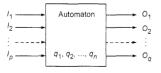


Figure 3: Model of a discrete automaton

Characteristics of Automata

- Input-At a discrete instant of time t_1, t_2,t_m, input values $l_1, l_2....l_p$ take finite number of fixed values from input alphabet Σ are applied as input to model.
- Output- $O_1, O_2, ... O_q$ are output of model, each of which can take finite number of fixed values from an Output.
- States- At any instant of time, the automaton can be in one of the states $q_1, q_2, ...q_n$
- State relation- The next state of an automaton at any instant of time is determined by present state and present input.

Discrete Automata

Model of discrete automaton:

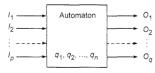


Figure 3: Model of a discrete automaton

Characteristics of Automata

- Input-At a discrete instant of time t_1, t_2, t_m, input values $I_1, I_2, ..., I_p$ take finite number of fixed values from **input alphabet** Σ are applied as input to model.
- Output- $O_1, O_2, ... O_q$ are output of model, each of which can take finite number of fixed values from an Output.
- States- At any instant of time, the automaton can be in one of the states $q_1, q_2, ...q_n$
- State relation- The next state of an automaton at any instant of time is determined by present state and present input.
- Output relation- On reading an input symbol, automaton moves to

Dr. A K Yadav

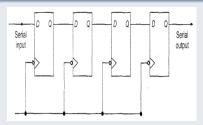
- Automaton without Memory: An automata in which the output depends only on input.
- Automaton with finite Memory: An automaton in which the output depends on states as well as input.

- Automaton without Memory: An automata in which the output depends only on input.
- Automaton with finite Memory: An automaton in which the output depends on states as well as input.
 - Moore Machine: An automaton in which the output depends only on states of machine.
 - Mealy Machine: An automaton in which output depends on the state as well as on the input at any instant of time.

Discrete Automata

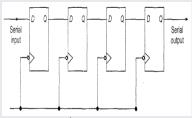
Any sequential machine behaviour can be represented by an automaton.

Example: Consider a 4-bit serial shift register as a finite state machine.



Any sequential machine behaviour can be represented by an automaton.

Example: Consider a 4-bit serial shift register as a finite state machine.



- \blacksquare 2⁴ = 16 states (0000, 0001,, 1111)
- 1 serial Input and 1 serial output
- \blacksquare Input alphabet, $\Sigma = \{0,\!1\}$
- Can be represented as

■ Here, output depends on both Input and state : Mealy machine.

- A finite automaton can be represented by a **finite 5-tuple** $(Q, \Sigma, \delta, q_0, F)$, where:
 - Q is a finite non-empty set of states.
 - Σ is a finite non-empty set of inputs called Input alphabet.
 - δ is a function which maps $Q \times \Sigma \to Q$ called **Direct transition** function

It describes change of states during transition. It is represented by transition table \ diagram.

- $q_0 \in Q$ is Initial state
- $F \subseteq Q$ is the set of **Final states**
- The transition function which maps Q × Σ* into Q is called Indirect transition function.

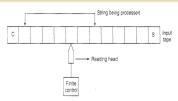


Figure 4: Block diagram of Finite Automata

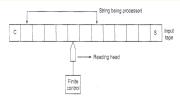


Figure 4: Block diagram of Finite Automata

- Input tape: Each square contains a single symbol from input alphabet Σ .
 - C and s are end markers of Tape
 - Absence of end markers indicates that the tape is of infinite length

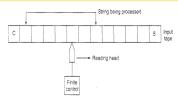


Figure 4: Block diagram of Finite Automata

- Input tape: Each square contains a single symbol from input alphabet Σ .
 - C and S are end markers of Tape
 - Absence of end markers indicates that the tape is of infinite length
- Reading Head: Examines only 1 □ at a time
 - lacksquare can move from Left o Right or Right o Left

Finite Automata

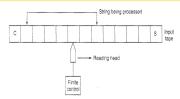
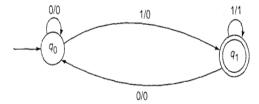


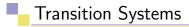
Figure 4: Block diagram of Finite Automata

- Input tape: Each square contains a single symbol from input alphabet Σ .
 - C and \$ are end markers of Tape
 - Absence of end markers indicates that the tape is of infinite length
- Reading Head: Examines only 1

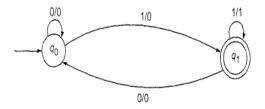
 at a time
 - \blacksquare can move from Left \rightarrow Right or Right \rightarrow Left
- Finite Control: Input to a finite control will usually be a symbol under read head. Following Outputs:
 - A motion to R-head along the tape on next \square
 - Next state of the finite state machine given by $\delta(q, a)$

A transition system or transition graph is finite directed labelled graph in which each vertex (node) is represented by a state and edges are labelled with input/output.





 A transition system or transition graph is finite directed labelled graph in which each vertex (node) is represented by a state and edges are labelled with input/output.



- A transition system is a 5-tuple $(Q, \Sigma, \delta, Q_0, F)$ where:
 - Q, Σ, F are finite non-empty set of states, input alphabet and set of final states respectively.
 - lacksquare $Q_0\subseteq Q$ and is non-empty
 - δ is a finite subset of $Q \times \Sigma^* \times Q$

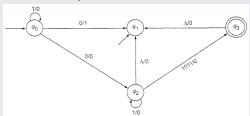
- A transition system accepts a string w in Σ^* if:
 - There exists a path which originates from some initial state, goes along the arrows and terminates at some final state, and
 - The path value obtained by concatenation of all edge-labels of the path is equal to w

Transition system

- A transition system accepts a string w in Σ^* if:
 - There exists a path which originates from some initial state, goes along the arrows and terminates at some final state, and
 - The path value obtained by concatenation of all edge-labels of the path is equal to w

Example

Consider the given transition system:



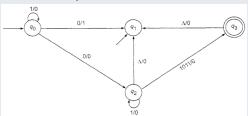
Determine the initial states, final states and acceptability of 101011, 111010.

Transition system

- A transition system accepts a string w in Σ^* if:
 - There exists a path which originates from some initial state, goes along the arrows and terminates at some final state, and
 - The path value obtained by concatenation of all edge-labels of the path is equal to w

Example

Consider the given transition system:



Determine the initial states, final states and acceptability of 101011, 111010. Initial states: q_0 and q_1 ; Final State: q_3

Path value $q_0q_0q_2q_3$ for $101011 \implies$ accepted by system

But, 111010 not accepted

- Every finite automaton (Q, Σ , δ , q_0 , F) can be viewd as a transition system (Q, Σ , δ' , Q_0 , F) if we take $Q_0 = \{q_0\}$ and $\delta' = \{(q, w, \delta(q, w)) | q \in Q, w \in \Sigma^*\}$
- But, a transition system need not be a finite automaton.
- Example: A transition system may contain more than one initial state.

- Every finite automaton (Q, Σ , δ , q_0 , F) can be viewd as a transition system (Q, Σ , δ' , Q_0 , F) if we take $Q_0 = \{q_0\}$ and $\delta' = \{(q, w, \delta(q, w)) | q \in Q, w \in \Sigma^*\}$
- But, a transition system need not be a finite automaton.
- Example: A transition system may contain more than one initial state.
- Properties of Transition Functions:
 - 1 $\delta(q, \wedge) = q$ is a finite automaton \implies State of the system can be changed only by an input symbol.
 - 2 For all strings w and input symbol a: $\delta(q, aw) = \delta(\delta(q, a), w)$

$$\delta(q, aw) = \delta(\delta(q, a), w)$$

 $\delta(q, wa) = \delta(\delta(q, w), a)$

- Every finite automaton (Q, Σ , δ , q_0 , F) can be viewd as a transition system (Q, Σ , δ' , Q_0 , F) if we take $Q_0 = \{q_0\}$ and $\delta' = \{(q, w, \delta(q, w)) | q \in Q, w \in \Sigma^*\}$
- But, a transition system need not be a finite automaton.
- Example: A transition system may contain more than one initial state.
- Properties of Transition Functions:
 - 1 $\delta(q, \wedge) = q$ is a finite automaton \implies State of the system can be changed only by an input symbol.
 - 2 For all strings w and input symbol a: $\delta(q, aw) = \delta(\delta(q, a), w)$ $\delta(q, wa) = \delta(\delta(q, w), a)$

Exercise:

Prove that for any transition function δ and for any two input string x and y $\delta(q, xy) = \delta(\delta(q, x), y)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$ ightarrow q_0$	q 2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q 2

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

Consider the finite state machine whose transition function δ is given below in form of a transition table. Here, Q= $\{q_0,q_1,q_2,q_3\}$, $\Sigma=\{0,1\}$, F= $\{q_0\}$. Give the entire sequence of states for the input string 110101.

	Input	
State	0	1
$ ightarrow q_0$	q_2	q_1
q_1	q 3	q_0
q_2	q_0	q 3
q 3	q_1	q_2

Answer: $\delta(q_0, \mathbf{1}10101) = \delta(q_1, \mathbf{1}0101)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$\rightarrow q_0$	q_2	q_1
q_1	q 3	q 0
q_2	q_0	q 3
q 3	q_1	q_2

Answer:
$$\delta(q_0, \mathbf{1}10101) = \delta(q_1, \mathbf{1}0101)$$

= $\delta(q_0, \mathbf{0}101)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$ ightarrow q_0$	q 2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q 2

Answer:
$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

= $\delta(q_0, 0101)$
= $\delta(q_2, 101)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$ ightarrow q_0$	q 2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q 2

Answer:
$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

= $\delta(q_0, 0101)$
= $\delta(q_2, 101)$
= $\delta(q_3, 01)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$ ightarrow q_0$	q 2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q 2

Answer:
$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

= $\delta(q_0, 0101)$
= $\delta(q_2, 101)$
= $\delta(q_3, 01)$
= $\delta(q_1, 1)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$\rightarrow q_0$	q_2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q_2

Answer:
$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

= $\delta(q_0, 0101)$
= $\delta(q_2, 101)$
= $\delta(q_3, 01)$
= $\delta(q_1, 1)$
= $\delta(q_0, \wedge)$

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

Example

	Input	
State	0	1
$\rightarrow q_0$	q_2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q_2

Answer:
$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

 $= \delta(q_0, 0101)$
 $= \delta(q_2, 101)$
 $= \delta(q_3, 01)$
 $= \delta(q_1, 1)$
 $= \delta(q_0, \wedge)$
 $= q_0$

4

Acceptability of a String by a finite automaton

■ A string 'x' is accepted by a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\delta(q_0, x) = q$ for some $q \in F$

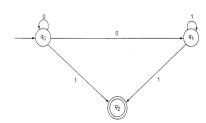
Example

	Input	
State	0	1
$ ightarrow q_0$	q_2	q_1
q_1	q 3	q 0
q_2	q_0	q ₃
q 3	q_1	q_2

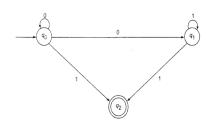
Answer:
$$\delta(q_0, 110101) = \delta(q_1, 10101)$$

= $\delta(q_0, 0101)$
= $\delta(q_2, 101)$
= $\delta(q_3, 01)$
= $\delta(q_1, 1)$
= $\delta(q_0, \wedge)$

Non-Deterministic Finite State Machines



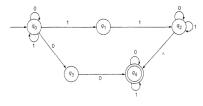
Non-Deterministic Finite State Machines



A non-deterministic finite automaton (NDFA) is a 5-tuple

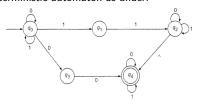
- (Q,Σ,δ,q_0,F) where
 - Q is a finite non-empty set of states
 - Σ is a finite non-empty set of inputs
 - δ is a transition function mapping from $Q \times \Sigma$ into 2^Q which is power set of Q, the set of all subsets of Q
 - $q_0 \in Q$ is the initial state
 - $F \subseteq Q$ is the set of final states.

Consider a Non-deterministic automaton as under:

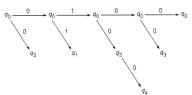


Determine the sequence of states for input string 0100

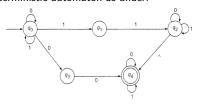
Consider a Non-deterministic automaton as under:



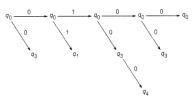
Determine the sequence of states for input string 0100



Consider a Non-deterministic automaton as under:



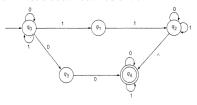
Determine the sequence of states for input string 0100



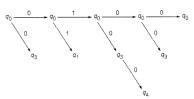
 $\delta(q_0, 0100) = \{q_0, q_3, q_4\}$ Since q_0 is the final state q_0 input string Q_0

Since q_4 is the final state. \therefore input string 0100 is accepted by the system.

Consider a Non-deterministic automaton as under:



Determine the sequence of states for input string 0100



- $\delta(q_0, 0100) = \{q_0, q_3, q_4\}$ Since q_4 is the final state. \therefore input string 0100 is accepted by the system.
- A string $w \in \Sigma^*$ is accepted by NDFA "M". If $\delta(q_0, w)$ contains some final state.

Equivalence of DFA and NDFA

- A DFA can simulate the behaviour of NDFA by increasing the number of states
- DFA (Q, Σ , δ , q_0 , F) can be viewed as NDFA (Q, Σ , δ' , q_0 , F)
- Any NDFA is a more general machine without being more powerful.
 - ⇒ For every NDFA, there exists a DFA which simulates the behaviour of NDFA.

Equivalence of DFA and NDFA

- A DFA can simulate the behaviour of NDFA by increasing the number of states
- DFA (Q, Σ , δ , q_0 , F) can be viewed as NDFA (Q, Σ , δ' , q_0 , F)
- Any NDFA is a more general machine without being more powerful.
 - \implies For every NDFA, there exists a DFA which simulates the behaviour of NDFA. **Alternatively, if** L is a set accepted by NDFA, then there exists a DFA which also accepts L.

Example

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

Solution: For the deterministic automaton M_1 :

■ The states are subsets of $\{q_0, q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

- The states are subsets of $\{q_0, q_1\}$ $\Rightarrow \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q_0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0, q_1\}$ $\Rightarrow \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$		

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

- The states are subsets of $\{q_0, q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input		
	0	1	
$[\phi]$	$[\phi]$		

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

- The states are subsets of $\{q_0, q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
[q ₀]		

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0, q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
$[q_0]$	$[q_0]$	

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
$[q_0]$	$[q_0]$	$[q_1]$

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$ ightarrow q_0$	q_0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0, q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$\overline{[\phi]}$	$[\phi]$	$[\phi]$
$[q_0]$	[<i>q</i> ₀]	$[q_1]$
$[q_1]$		

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0, q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0, q_1]$
- [q₀] is initial state.
- lacksquare $[q_0]$ and $[q_0,q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
[q ₀]	$[q_0]$	$[q_1]$
$[q_1]$	$[q_1]$	

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
[q ₀]	$[q_0]$	$[q_1]$
$[q_1]$	$[q_1]$	$[q_0, q_1]$

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

Input	
0	1
q_0	q_1
q_1	q_0, q_1
	0 q 0

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- $[q_0]$ and $[q_0, q_1]$ are final states as these are the only states containing q_0
- δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
[q ₀]	$[q_0]$	$[q_1]$
$[q_1]$	$[q_1]$	$[q_0, q_1]$
$[q_o,q_1]$		

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- lacksquare $[q_0]$ and $[q_0,q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Inp	out
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
$[q_0]$	$[q_0]$	$[q_1]$
$[q_1]$	$[q_1]$	$[q_0, q_1]$
$[q_o,q_1]$	$[q_o,q_1]$	

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q_0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- lacksquare $[q_0]$ and $[q_0,q_1]$ are final states as these are the only states containing q_0
- δ is defined by state table as under:

State	Inp	out
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
$[q_0]$	$[q_0]$	$[q_1]$
$[q_1]$	$[q_1]$	$[q_0, q_1]$
$[q_o,q_1]$	$[q_o,q_1]$	$[q_o,q_1]$

Contruct a deterministic automaton equivalent to M=($\{q_0, q_1\}$, $\{0, 1\}$, δ , q_0 , $\{q_0\}$) where δ is defined as under:

State	Input	
	0	1
$\rightarrow q_0$	q 0	q_1
q_1	q_1	q_0, q_1

- The states are subsets of $\{q_0,q_1\}$ $\implies \phi$, $[q_0]$, $[q_1]$, $[q_0,q_1]$
- [q₀] is initial state.
- $lacksquare [q_0]$ and $[q_0,q_1]$ are final states as these are the only states containing q_0
- lacksquare δ is defined by state table as under:

State	Input	
	0	1
$[\phi]$	$[\phi]$	$[\phi]$
$[q_0]$	$[q_0]$	$[q_1]$
$[q_1]$	$[q_1]$	$[q_0, q_1]$
$[q_o,q_1]$	$[q_o,q_1]$	$[q_o,q_1]$

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Inp	out
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q 0	q_1
q 2	ϕ	q_0, q_1

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

Inp	out
a	b
q_0, q_1	q_2
q 0	q_1
ϕ	q_0, q_1
	a q ₀ , q ₁

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
<u>q</u> 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows:

$$M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$$

where,
$$F' = \{[q_2], [q_0, q_2], [q_1, q_2], [q_0, q_1, q_2]\}$$

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Inp	out
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
Q 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows:

 $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$ where, $F'=\{[q_2],[q_0,q_2],[q_1,q_2],[q_0,q_1,q_2]\}$

State	Input	
	а	b
[<i>q</i> ₀]		

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
q 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$

where,
$$F' = \{[q_2], [q_0, q_2], [q_1, q_2], [q_0, q_1, q_2]\}$$

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
q 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows:

 $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$ where, $F'=\{[q_2],[q_0,q_2],[q_1,q_2],[q_0,q_1,q_2]\}$

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q 0	q_1
q 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\},\ \delta,\ [q_0],\ F')$

where,
$$F' = \{[q_2], [q_0, q_2], [q_1, q_2], [q_0, q_1, q_2]\}$$

State	Input	
	a	b
[q ₀]	$[q_0, q_1]$	$[q_2]$
[q ₁]		

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
<u>q</u> 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$ where, $F'=\{[q_2],[q_0,q_2],[q_1,q_2],[q_0,q_1,q_2]\}$

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
q 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1 = (2^Q, \{a,b\}, \delta, [q_0], F')$

where,
$$F' = \{[q_2], [q_0, q_2], [q_1, q_2], [q_0, q_1, q_2]\}$$

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	$[q_2]$
$[q_1]$	$[q_0]$	$[q_1]$

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q 0	q_1
<u>q</u> 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$ where, $F'=\{[q_2],[q_0,q_2],[q_1,q_2],[q_0,q_1,q_2]\}$

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q 0	q_1
<u>q</u> 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\},\,\delta,\,[q_0],\,\mathsf{F}')$

where, $F' = \{[q_2], [q_0, q_2], [q_1, q_2], [q_0, q_1, q_2]\}$

State	Inp	ut
	a	b
[q ₀]	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
[q ₂]	ϕ	

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
<u>q</u> 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\}, \delta, [q_0], F')$ where, $F'=\{[q_2],[q_0,q_2],[q_1,q_2],[q_0,q_1,q_2]\}$

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
$[q_2]$	ϕ	$[q_0, q_1]$

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q_2
q_1	q 0	q_1
q 2	ϕ	q_0, q_1

Solution: The deterministic automaton M_1 equivalent to M is defined as follows: $M_1=(2^Q,\{a,b\},\ \delta,\ [q_0],\ F')$ where, $F'=\{[q_2],[q_0,q_2],[q_1,q_2],[q_0,q_1,q_2]\}$

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
$[q_2]$	ϕ	$[q_0, q_1]$
$[q_0, q_1]$		

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q 0	q_1
<u>q</u> 2	ϕ	q_0, q_1

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
$[q_2]$	ϕ	$[q_0, q_1]$
$[q_0, q_1]$	$[q_0, q_1]$	

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q_2
q_1	q 0	q_1
q 2	ϕ	q_0, q_1

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
[q ₂]	ϕ	$[q_0, q_1]$
$[q_0, q_1]$	$[q_0, q_1]$	$[q_1, q_2]$

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q_2
q_1	q_0	q_1
q 2	ϕ	q_0, q_1

State	Input	
	a	b
[q ₀]	$[q_0, q_1]$	[q ₂]
$[q_1]$	[q ₀]	$[q_1]$
[q ₂]	ϕ	$[q_0, q_1]$
$[q_0, q_1]$	$[q_0, q_1]$	$[q_1, q_2]$
$[q_1, q_2]$		

Find a deterministic acceptor equivalent to:

M=
$$(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$$

where δ is given by

State	Input	
	а	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q_0	q_1
<u>q</u> 2	ϕ	q_0, q_1

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
$[q_2]$	ϕ	$[q_0, q_1]$
$[q_0, q_1]$	$[q_0, q_1]$	$[q_1, q_2]$
$[q_1, q_2]$	$[q_0]$	

Find a deterministic acceptor equivalent to:

M= $(\{q_0,q_1,q_2\},\{a,b\}, \delta, q_0, \{q_2\})$ where δ is given by

State	Input	
	a	b
$ ightarrow q_0$	q_0, q_1	q 2
q_1	q 0	q_1
q 2	ϕ	q_0, q_1

State	Input	
	a	b
$[q_0]$	$[q_0, q_1]$	[q ₂]
$[q_1]$	$[q_0]$	$[q_1]$
$[q_2]$	ϕ	$[q_0, q_1]$
$[q_0, q_1]$	$[q_0, q_1]$	$[q_1, q_2]$
$[q_1, q_2]$	$[q_0]$	$[q_0, q_1]$

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	<i>q</i> ₀
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2
- 43		9.

State	Input		
	a	Ь	
[q ₀]			

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

State	Input		
	a	b	
[q ₀]	$[q_o, q_1]$		

Construct a deterministic finite automaton equivalent to M=($\{q_0,q_1,q_2,q_3\}$, $\{a,b\}$, δ , q_0 , $\{q_3\}$) where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@ 3		92

_	State	Input	
		a	b
	[q ₀]	$[q_o, q_1]$	[q ₀]

Construct a deterministic finite automaton equivalent to M=($\{q_0,q_1,q_2,q_3\}$, $\{a,b\}$, δ , q_0 , $\{q_3\}$) where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	<i>q</i> 0
q_1	q_2	q_1
q_2	q 3	q 3
@		92

State	Inpu	ıt
	a	b
[q ₀]	$[q_o, q_1]$	$[q_0]$
$[q_0, q_1]$		

Construct a deterministic finite automaton equivalent to M=($\{q_0,q_1,q_2,q_3\}$, $\{a,b\}$, δ , q_0 , $\{q_3\}$) where δ is as under:

State	Input	
	a	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

State	Inp	out
	a	b
[90]	$[q_o, q_1]$	[q ₀]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

Inpu	t
а	b
q_0, q_1	q 0
q_2	q_1
q 3	q 3
	92
	$q_0, q_1 = q_2$

State	Inp	ut
	a	b
[90]	$[q_o, q_1]$	[90]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$

Construct a deterministic finite automaton equivalent to M=($\{q_0,q_1,q_2,q_3\}$, $\{a,b\}$, δ , q_0 , $\{q_3\}$) where δ is as under:

Inpu	t
а	b
q_0, q_1	q 0
q_2	q_1
q 3	q 3
	92
	$q_0, q_1 = q_2$

State	lı	nput
	a	b
[q ₀]	$[q_o, q_1]$	[<i>q</i> ₀]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$		

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

State	Input	
	a	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

State	Inpu	t
	a	b
[90]	$[q_o, q_1]$	[90]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	

Construct a deterministic finite automaton equivalent to $M=(\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\})$ where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

State	Inpi	шt
	a	b
[q ₀]	$[q_o, q_1]$	[<i>q</i> ₀]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$
	$\begin{bmatrix} q_0 \end{bmatrix} \\ \begin{bmatrix} q_0, q_1 \end{bmatrix}$	$ \begin{bmatrix} q_0 \\ [q_0, q_1] \\ [q_0, q_1, q_2] \end{bmatrix} $

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

State	Inpi	ut
	a	b
[90]	$[q_o, q_1]$	[90]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$
$[q_0, q_1, q_3]$		

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

Inpu	t
а	b
q_0, q_1	q 0
q_2	q_1
q 3	q 3
	92
	$q_0, q_1 = q_2$

State	Inpi	ut
	a	b
[90]	$[q_o, q_1]$	[90]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$
$[q_0, q_1, q_3]$	$[q_0, q_1, q_2]$	

Construct a deterministic finite automaton equivalent to $M=(\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\})$ where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

Solution: Let $Q = \{q_0, q_1, q_2, q_3\}$, then the deterministic automaton M_1 equivalent to M is given by $M_1 = (2^Q, \{a,b\}, \delta, [q_0], F)$ where, F consists of: $\{[q_3],[q_0,q_3],[q_1,q_3],[q_2,q_3],[q_0,q_1,q_3],[q_0,q_2,q_3],[q_1,q_2,q_3],[q_0,q_1,q_2,q_3]\}$

and δ is defined by state table as under:

State	Inpi	ut
	a	b
[90]	$[q_o, q_1]$	[90]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$
$[q_0, q_1, q_3]$	$[q_0, q_1, q_2]$	$[q_0, q_1, q_2]$

Construct a deterministic finite automaton equivalent to $M=(\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\})$ where δ is as under:

State	Input	
	а	b
$\rightarrow q_0$	q_0, q_1	q 0
q_1	q_2	q_1
q_2	q 3	q 3
@		q 2

Solution: Let $Q = \{q_0, q_1, q_2, q_3\}$, then the deterministic automaton M_1 equivalent to M is given by $M_1 = (2^Q, \{a,b\}, \delta, [q_0], F)$ where, F consists of: $\{[q_3],[q_0,q_3],[q_1,q_3],[q_2,q_3],[q_0,q_1,q_3],[q_0,q_2,q_3],[q_1,q_2,q_3],[q_0,q_1,q_2,q_3]\}$

and δ is defined by state table as under:

State	Inp	ut
	a	b
[90]	$[q_o, q_1]$	[90]
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$
$[q_0, q_1, q_3]$	$[q_0, q_1, q_2]$	$[q_0, q_1, q_2]$
$[q_0, q_1, q_2, q_3]$		

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

State	Input		
	a b		
$\rightarrow q_0$	q_0, q_1	q 0	
q_1	q_2	q_1	
q_2	q 3	q 3	
@		q 2	

State	Input		
	a	b	
[90]	$[q_o, q_1]$	[90]	
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$	
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$	
$[q_0, q_1, q_3]$	$[q_0, q_1, q_2]$	$[q_0, q_1, q_2]$	
$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_2, q_3]$		

Construct a deterministic finite automaton equivalent to $M = (\{q_0, q_1, q_2, q_3\}, \{a,b\}, \delta, q_0, \{q_3\})$ where δ is as under:

Input		
a b		
q_0, q_1	q 0	
q_2	q_1	
q 3	q 3	
	92	
	a q ₀ , q ₁ q ₂	

Solution: Let $Q = \{q_0, q_1, q_2, q_3\}$, then the deterministic automaton M_1 equivalent to M is given by $M_1 = (2^Q, \{a,b\}, \delta, [q_0], F)$ where, F consists of: $\{[q_3], [q_0, q_3], [q_1, q_3], [q_2, q_3], [q_0, q_1, q_3], [q_0, q_2, q_3], [q_1, q_2, q_3], [q_0, q_1, q_2, q_3]\}$ and δ is defined by state table as under:

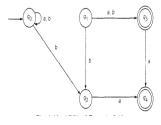
State Input $[q_0]$ $[q_0, q_1]$ $[q_0]$ $[q_0, q_1]$ $[q_0, q_1, q_2]$ $[q_0, q_1]$ $[q_0, q_1, q_2]$ $[q_0, q_1, q_2, q_3]$ $[q_0, q_1, q_3]$ q_0, q_1, q_3 $[q_0, q_1, q_2]$ $[q_0, q_1, q_2]$

Construct a deterministic finite automaton equivalent to $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$ where δ is as under:

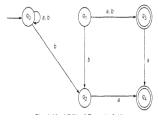
State	Input		
	a b		
$\rightarrow q_0$	q_0, q_1	q 0	
q_1	q_2	q_1	
q_2	q 3	q 3	
@		q 2	

State	Input		
	a	b	
[90]	$[q_o, q_1]$	[q ₀]	
$[q_0, q_1]$	$[q_0, q_1, q_2]$	$[q_0, q_1]$	
$[q_0, q_1, q_2]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_3]$	
$[q_0, q_1, q_3]$	$[q_0, q_1, q_2]$	$[q_0, q_1, q_2]$	
$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_2, q_3]$	$[q_0, q_1, q_2, q_3]$	

1 Construct a DFA equivalent to NDFA 'M' whose transition diagram is given as:



Construct a DFA equivalent to NDFA 'M' whose transition diagram is given as:



2 Construct a DFA equivalent to NDFA with initial state q_0 whose transition table is defined as

State	а	b
q ₀	q ₁ , q ₃	q ₂ , q ₃
q_1	q ₁	q_3
q_2	q_3	q_2
92 93		

Example 1

Construct a DFA accepting all strings 'w' over $\{0,1\}$ such that the number of 1's in 'w' is 3mod4.

Example 1

Construct a DFA accepting all strings 'w' over $\{0,1\}$ such that the number of 1's in 'w' is 3mod4.

Solution: Let the required DFA, as the condition on strings of $\mathsf{T}(\mathsf{M})$ doesn't at all involve 0,

 \implies M doesnot change the state on input 0.

Example 1

Construct a DFA accepting all strings 'w' over $\{0,1\}$ such that the number of 1's in 'w' is 3mod4.

Solution: Let the required DFA, as the condition on strings of $\mathsf{T}(\mathsf{M})$ doesn't at all involve 0,

 \implies M doesnot change the state on input 0.

If 1 appears in w (4k+3) times, M can come back to initial state, after reading 4 1's and to a final state after reading 3 1's.

Example 1

Construct a DFA accepting all strings 'w' over $\{0,1\}$ such that the number of 1's in 'w' is 3mod4.

Solution: Let the required DFA, as the condition on strings of $\mathsf{T}(\mathsf{M})$ doesn't at all involve 0,

 \implies M doesnot change the state on input 0.

If 1 appears in w (4k+3) times, M can come back to initial state, after reading 4 1's and to a final state after reading 3 1's.

The required DFA:

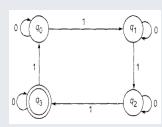
Example 1

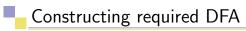
Construct a DFA accepting all strings 'w' over $\{0,1\}$ such that the number of 1's in 'w' is 3mod4.

Solution: Let the required DFA, as the condition on strings of $\mathsf{T}(\mathsf{M})$ doesn't at all involve 0,

 \implies M doesnot change the state on input 0.

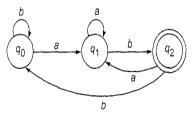
If 1 appears in w (4k+3) times, M can come back to initial state, after reading 4 1's and to a final state after reading 3 1's. The required DFA:



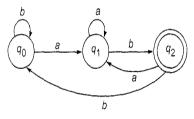


1 Construct a DFA accepting all strings over $\{a,b\}$ ending in ab.

1 Construct a DFA accepting all strings over $\{a,b\}$ ending in ab.

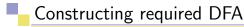


I Construct a DFA accepting all strings over $\{a,b\}$ ending in ab.



Construct a DFA equivalent to NDFA for:

State	Input		
	0	\wedge	
$ ightarrow q_0$	q_0, q_3	q_0, q_1	
q_1	q_2		
q_2	q ₂	q 2	q_4
q 3	q 4		
q_{4}	q 4	q_4	



 $\begin{tabular}{l} \mathbf{M} = & (\{q_1,q_2,q_3\},\{0,1\},\;\delta,q_1,\{q_3\}) \ \mbox{is a NDFA where δ is given} \\ & by: \\ & \delta(q_1,0) = & \{q_2,q_3\} \\ & \delta(q_1,1) = & \{q_1\} \\ & \delta(q_2,0) = & \{q_1,q_2\} \\ & \delta(q_2,1) = & \phi \\ & \delta(q_3,0) = & \{q_2\} \\ & \delta(q_3,1) = & \{q_1,q_2\} \\ & \end{tabular}$ Construct equivalent DFA.

- Moore Machine is a 6-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$
 - where \mathbf{Q} is a finite set of states
 - Σ is the input alphabet
 - △ is the output alphabet
 - δ is the transition function $Q \times \Sigma$ into **Q**
 - λ is the output function **Q** into Δ
 - q_0 is the initial state

- Moore Machine is a 6-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$
 - where $\boldsymbol{\mathsf{Q}}$ is a finite set of states
 - Σ is the input alphabet
 - △ is the output alphabet
 - δ is the transition function $Q \times \Sigma$ into Q
 - λ is the output function **Q** into Δ
 - q_0 is the initial state

Example:

Initial state q_0 is marked with an arrow. The table defines δ and λ :

Present	Next State		Output
State	a=0	a=1	λ
$ ightarrow q_0$	q 3	q_1	0
q_1	q_1	q ₂	1
q_2	q_2	q ₃	0
q 3	q 3	q 0	0

Determine transition states and output string for input string 0111.

- Moore Machine is a 6-tuple (Q, Σ , Δ , δ , λ , q_0)
 - where Q is a finite set of states
 - Σ is the input alphabet
 - Δ is the output alphabet
 - δ is the transition function $Q \times \Sigma$ into **Q**
 - λ is the output function **Q** into Δ
 - q_0 is the initial state

Example:

Initial state q_0 is marked with an arrow. The table defines δ and λ :

Present	Next State		Output
State	a=0	a=1	λ
$ ightarrow q_0$	q 3	q_1	0
q_1	q_1	q ₂	1
q_2	q ₂	q ₃	0
q ₃	q 3	q 0	0

Determine transition states and output string for input string 0111.

Solution: Transition states:

$$q_0 \xrightarrow{0 \setminus 0} q_3 \xrightarrow{1 \setminus 0} q_0 \xrightarrow{1 \setminus 0} q_1 \xrightarrow{1 \setminus 1} q_2 0$$

OutputString: 00010

- Mealy Machine is a 6-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$ where Q is a finite set of states
 - Σ is the input alphabet

 - △ is the output alphabet
 - δ is the transition function $Q \times \Sigma$ into **Q**
 - λ is the output function mapping $\mathbf{Q} \times \Sigma$ into Δ
 - q_0 is the initial state

Finite Automata with Outputs

- Mealy Machine is a 6-tuple $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$
 - where \mathbf{Q} is a finite set of states
 - Σ is the input alphabet
 - △ is the output alphabet
 - $\pmb{\delta}$ is the transition function $\pmb{Q} \times \pmb{\Sigma}$ into \pmb{Q}
 - λ is the output function mapping $\mathbf{Q} \times \Sigma$ into Δ
 - q_0 is the initial state

Example:

Consider a mealy machine for q_1 as initial state.

Present	a=0		a=1	
State	State	Output	State	Output
$ o q_1$	q 3	0	q ₂	0
q ₂	q_1	1	q 4	0
q ₃	q_2	1	q_1	1
q 4	q 4	1	q 3	0

Determine the transition of states and corresponding output string for input string 0011.

Finite Automata with Outputs

- Mealy Machine is a 6-tuple (Q, Σ , Δ , δ , λ , q_0)
 - where \mathbf{Q} is a finite set of states
 - Σ is the input alphabet
 - △ is the output alphabet
 - δ is the transition function $Q \times \Sigma$ into Q
 - λ is the output function mapping $\mathbf{Q} \times \Sigma$ into Δ
 - q_0 is the initial state

Example:

Consider a mealy machine for q_1 as initial state.

Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 2	0
q_2	q_1	1	q 4	0
q_3	q_2	1	q_1	1
q_4	q 4	1	q 3	0

Determine the transition of states and corresponding output string for input string 0011.

Solution: $q_1 \xrightarrow{0 \setminus 0} q_3 \xrightarrow{0 \setminus 1} q_2 \xrightarrow{1 \setminus 0} q_4 \xrightarrow{1 \setminus 0} q_3$

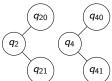
Output String: 0100

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

	•	•	,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q 3	q ₂	1	q_1	1	
q 4	q 4	1	q 3	0	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

a=0		a=1	
State	Output	State	Output
q 3	0	q ₂	0
q_1	1	q_4	0
q 2	1	q_1	1
q 4	1	q 3	0
	State q ₃ q ₁ q ₂	$\begin{array}{c c} \text{State} & \text{Output} \\ \hline q_3 & 0 \\ \hline q_1 & 1 \\ \hline q_2 & 1 \\ \hline \end{array}$	State Output State q_3 0 q_2 q_1 1 q_4 q_2 1 q_1



Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

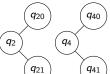
			U	,		
	Present	a	a=0		a=1	
	State	State	Output	State	Output	
Ī	$ ightarrow q_1$	q 3	0	q ₂	0	
	q_2	q_1	1	q_4	0	
	q_3	q ₂	1	q_1	1	
	q_4	q 4	1	q 3	0	



Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$					
q ₂₀					
q 21					
q_3					
q_{40}					
q_{41}					

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

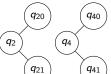
				,	
	Present	a=0		a=1	
	State	State	Output	State	Output
Ī	$ ightarrow q_1$	q 3	0	q ₂	0
Ī	q_2	q_1	1	q_4	0
	q_3	q ₂	1	q_1	1
	q_4	q 4	1	q 3	0



Present	a=0		a=1		
State	State	Output	State	Output	
$ o q_1$					

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

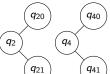
	•	-	-	
Present	a=0		a=1	
State	State	Output	State	Output
$ o q_1$	q 3	0	q ₂	0
q 2	q_1	1	q_4	0
q 3	q ₂	1	q_1	1
q 4	q 4	1	q 3	0



Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3			

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

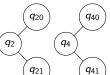
_		-			
	Present	a=0		a=1	
	State	State	Output	State	Output
	$ ightarrow q_1$	q 3	0	q ₂	0
	q_2	q_1	1	q_4	0
	q 3	q 2	1	q_1	1
	q_4	q 4	1	q 3	0
			1		0



_				
Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0		

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

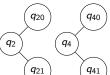
		U	,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



_						
Present	a=0		Present a=0		a	=1
State	State	Output	State	Output		
$ ightarrow q_1$	q 3	0	9 20			

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

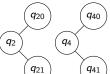
		U	,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q ₂₀				

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

		•			
P	resent	a	a=0		=1
9	State	State	Output	State	Output
	$ ightarrow q_1$	q 3	0	q ₂	0
	q_2	q_1	1	q_4	0
	q 3	q ₂	1	q_1	1
	q_4	q 4	1	q 3	0
	q ₂ q ₃	q ₁ q ₂	0 1 1 1	q ₄ q ₁	0 0 1 0



_				
Present	а	=0	a	=1
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q 20	q_1			

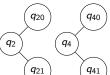
Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

		U	,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	

Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q ₂₀	q_1	1		

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

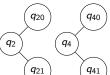
		U	,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q ₂₀	q_1	1	q ₄₀	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

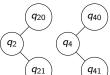
		U	,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



_	_			
Present	а	=0	a	=1
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q ₂₀	q_1	1	q ₄₀	0
q 21				

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

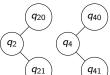
		U	,		
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



_	_				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1				

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

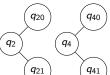
		U	,		
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



_	_				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1			

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

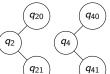
		U	,		
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



_	_				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40		

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

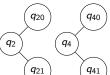
	•	•	,		
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	



_	_				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q 40	0	
q 21	q_1	1	q 40	0	
q 3					

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

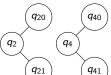
	•		,			
Present	a	a=0		a=1		
State	State	Output	State	Output		
$ ightarrow q_1$	q 3	0	q ₂	0		
q_2	q_1	1	q_4	0		
q_3	q ₂	1	q_1	1		
q_4	q 4	1	q 3	0		



\sim	\sim				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40	0	
q 3	q 21				

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

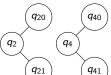
a=1		
ıtput		
0		
0		
1		
0		



\sim	\sim				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q 40	0	
q_{21}	q_1	1	q 40	0	
q 3	q 21	1			

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

ıtput
0
0
1
0



\sim	\sim				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40	0	
q 3	q 21	1	q_1		

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

			,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	

\sim	\sim				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40	0	
q 3	q 21	1	q_1	1	
a ₄₀					

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

	•	•	,	
Present	a	a=0		=1
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q_2	q_1	1	q_4	0
q_3	q ₂	1	q_1	1
q_4	q 4	1	q 3	0

_	_				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q_{20}	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40	0	
q 3	q 21	1	q_1	1	
q_{40}	q_{41}				

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

	•	•	,	
Present	a	a=0		=1
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q_2	q_1	1	q_4	0
q_3	q ₂	1	q_1	1
q_4	q 4	1	q 3	0

\sim	\sim				
Present	a=0		a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40	0	
q 3	q 21	1	q_1	1	
q ₄₀	q_{41}	1			

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

			U	,	
	Present	a	a=0		=1
	State	State	Output	State	Output
Ī	$ ightarrow q_1$	q 3	0	q ₂	0
	q_2	q_1	1	q_4	0
	q_3	q ₂	1	q_1	1
	q_4	q 4	1	q 3	0

_	_			
Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q ₂₀	q_1	1	q ₄₀	0
q 21	q_1	1	q 40	0
q 3	q 21	1	q_1	1
q_{40}	q ₄₁	1	q ₃	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

			,		
Present	a	a=0		a=1	
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	

_	_			
Present	a	=0	a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q_{20}	q_1	1	q ₄₀	0
q 21	q_1	1	q 40	0
q 3	q 21	1	q_1	1
q_{40}	q ₄₁	1	q ₃	0
q_{41}				

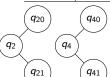
Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

			U	,	
	Present	a=0		a	=1
	State	State	Output	State	Output
•	$ ightarrow q_1$	q 3	0	q ₂	0
	q_2	q_1	1	q_4	0
	q_3	q ₂	1	q_1	1
	q_4	q 4	1	q 3	0

\sim	\sim				
Present	a	=0	a=1		
State	State	Output	State	Output	
$ ightarrow q_1$	q 3	0	q 20	0	
q ₂₀	q_1	1	q ₄₀	0	
q 21	q_1	1	q 40	0	
q 3	q 21	1	q_1	1	
q_{40}	q ₄₁	1	q ₃	0	
q_{41}	q 41				

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

	1				
Present	a=0		a=1		
State	State Output		State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	
_	_				



Γ.				
Present	a	=0	a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q ₃ 0		q 20	0
q ₂₀	q_1	1	q ₄₀	0
q 21	q_1	1	q 40	0
q 3	q 21	1	q_1	1
q_{40}	q_{41}	1	q ₃	0
q_{41}	q 41	1		
	$egin{array}{c} State \ ightarrow q_1 \ q_{20} \ q_{21} \ q_{3} \ q_{40} \ \end{array}$	$\begin{array}{c cccc} \text{State} & \text{State} \\ \to q_1 & q_3 \\ \hline q_{20} & q_1 \\ q_{21} & q_1 \\ q_3 & q_{21} \\ \hline q_{40} & q_{41} \\ \end{array}$	$\begin{array}{c ccccc} \text{State} & \text{State} & \text{Output} \\ \hline \to q_1 & q_3 & 0 \\ \hline q_{20} & q_1 & 1 \\ \hline q_{21} & q_1 & 1 \\ \hline q_3 & q_{21} & 1 \\ \hline q_{40} & q_{41} & 1 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

	1				
Present	a=0		a=1		
State	State Output		State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q_3	q ₂	1	q_1	1	
q_4	q 4	1	q 3	0	

_	_			
Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q 20	0
q ₂₀	q_1	1	q ₄₀	0
q_{21}	q_1	1	q 40	0
q_3	q 21	1	q_1	1
q_{40}	q ₄₁	1	q ₃	0
q_{41}	q ₄₁	1	q 3	
	$egin{array}{c} State \ ightarrow q_1 \ q_{20} \ q_{21} \ q_{3} \ q_{40} \ \end{array}$	$ \begin{array}{c cccc} \text{State} & \text{State} \\ \hline \rightarrow q_1 & q_3 \\ \hline q_{20} & q_1 \\ q_{21} & q_1 \\ q_3 & q_{21} \\ \hline q_{40} & q_{41} \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

			U	,		
	Present	a	a=0		a=1	
	State	State	Output	State	Output	
Ī	$ ightarrow q_1$	q 3	0	q ₂	0	
	q_2	q_1	1	q_4	0	
	q_3	q ₂	1	q_1	1	
	q_4	q 4	1	q 3	0	

	\sim	\sim				
•	Present	а	=0	a=1		
	State	State Output		State	Output	
	$ ightarrow q_1$	q 3	0	q 20	0	
	q_{20}	q_1	1	q ₄₀	0	
	q 21	q_1	1	q 40	0	
	q 3	q 21	1	q_1	1	
	<i>q</i> ₄₀	q 41	1	q ₃	0	
	q_{41}	q ₄₁	1	q 3	0	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1		
State	State Output		State	Output	
$ ightarrow q_1$	q 3	0	q ₂	0	
q_2	q_1	1	q_4	0	
q 3	q 2	1	q_1	1	
q 4	q 4	1	q 3	0	

$$\begin{array}{c|c} \hline q_{20} & q_{40} \\ \hline q_2 & q_4 \\ \hline q_{21} & q_{41} \\ \hline \end{array}$$

_			
Present	a=0	a=1	Output
q_1	q 3	q 20	
q ₂₀	q_1	q ₄₀	
q 21	q_1	q 40	
q 3	q 21	q_1	
q_{40}	q_{41}	q ₃	
q_{41}	q 41	q 3	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1	
State	State Output		State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q_2	q_1	1	q_4	0
q 3	q ₂	1	q_1	1
q 4	q 4	1	q 3	0

_			
Present	a=0	a=1	Output
q_1	q 3	q 20	1
q ₂₀	q_1	q ₄₀	
q 21	q_1	q 40	
q 3	q 21	q_1	
q_{40}	q_{41}	q ₃	
q 41	q 41	q 3	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1	
State	State	Output	State	Output
$ o q_1$	q 3	0	q ₂	0
q ₂	q_1	1	q_4	0
q ₃	q 2	1	q_1	1
q 4	q 4	1	q 3	0

_			
Present	a=0	a=1	Output
q_1	q 3	q 20	1
q ₂₀	q_1	q ₄₀	0
q 21	q_1	q 40	
q 3	q 21	q_1	
q_{40}	q_{41}	q ₃	
q_{41}	q 41	q 3	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q_2	q_1	1	q_4	0
q 3	q ₂	1	q_1	1
q 4	q 4	1	q 3	0

$$\begin{array}{c|c} \hline q_{20} & q_{40} \\ \hline q_2 & q_4 \\ \hline q_{21} & q_{41} \\ \hline \end{array}$$

_			
Present	a=0	a=1	Output
q_1	q 3	q 20	1
q ₂₀	q_1	q ₄₀	0
q 21	q_1	q 40	1
q 3	q 21	q_1	
q_{40}	q_{41}	q ₃	
q_{41}	q 41	q 3	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q 2	q_1	1	q_4	0
q 3	q ₂	1	q_1	1
q 4	q 4	1	q 3	0

$$\begin{array}{c|c} \hline q_{20} & q_{40} \\ \hline q_2 & q_4 \\ \hline q_{21} & q_{41} \\ \hline \end{array}$$

_			
Present	a=0	a=1	Output
q_1	q 3	q 20	1
q ₂₀	q_1	q 40	0
q_{21}	q_1	q 40	1
q 3	q 21	q_1	0
q_{40}	q_{41}	q ₃	
q_{41}	q 41	q 3	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q 2	q_1	1	q_4	0
q 3	q ₂	1	q_1	1
q 4	q 4	1	q 3	0

_			
Present	a=0	a=1	Output
q_1	q 3	q 20	1
q ₂₀	q_1	q 40	0
q 21	q_1	q 40	1
q 3	q 21	q_1	0
q ₄₀	q ₄₁	q ₃	0
q 41	q 41	q 3	

Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

Present	a=0		a=1	
State	State	Output	State	Output
$ ightarrow q_1$	q 3	0	q ₂	0
q 2	q_1	1	q_4	0
q 3	q ₂	1	q_1	1
q 4	q 4	1	q 3	0

$$\begin{array}{c|c} \hline q_{20} & q_{40} \\ \hline q_2 & q_4 \\ \hline q_{21} & q_{41} \\ \hline \end{array}$$

Solution:

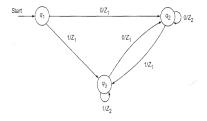
_			
Present	a=0	a=1	Output
q_1	q 3	q 20	1
q ₂₀	q_1	q 40	0
q 21	q ₂₁ q ₁		1
q 3	q 21	q_1	0
q ₄₀	q ₄₁	q ₃	0
q 41	q 41	q 3	1

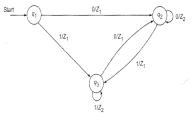
Consider the mealy machie described by given transition table. Construct a moore machine which is equivalent to given mealy machine.

		•	•	,	
	Present	a	=0	a	=1
	State	State	Output	State	Output
	$ ightarrow q_1$	q ₃	0	q_2	0
	q_2	q_1	1	q_4	0
	q 3	q ₂	1	q_1	1
	q_4	q 4	1	q 3	0
-					

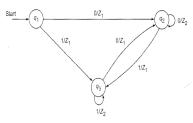
Solution:

\sim			
Present	a=0	a=1	Output
$ ightarrow q_0$	q 3	q 20	0
q_1	q ₃	q ₂₀	1
q ₂₀	q_1	q 40	0
q ₂₁	q_1	q 40	1
q ₃	q ₂₁	q_1	0
q 40	q 41	q 3	0
q 41	q 41	q 3	1



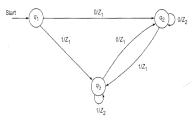


Present state		Next	state	
	a =	: 0	a :	= 1
	state	output	state	output
$\rightarrow q_1$	q ₂	Z ₁	q ₃	Z ₁
92	q_2	Z_2	q_3	Z_1
q 3	q_2	Ζ ₁	q_3	Z_2



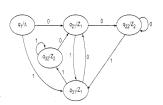
Present state		Next	state	
	a = 0		a = 1	
	state	output	state	outpui
$\rightarrow q_1$	q ₂	Z ₁	q ₃	Z ₁
92	q_2	Z_2	q_3	Z_1
Q ₃	q_2	Ζ ₁ .	q_3	Z_2

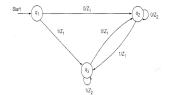
Present state	Next state		Output
	a = 0	a = 1	
→q ₁	q ₂₁	q ₃₁	
q ₂₁	q_{22}	q_{31}	Z_1
922	Q ₂₂	q ₃₁	Z_2
q ₃₁	q ₂₁	q_{32}	Z ₁
932	921	q ₃₂	Z_2



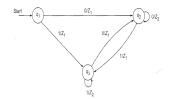
Present state		Next	state	
	a = 0		a = 1	
	state	output	state	outpui
$\rightarrow q_1$	q ₂	Z ₁	q ₃	Z ₁
92	q_2	Z_2	q_3	Z_1
q 3	q_2	Ζ ₁ .	q_3	Z_2

Present state	Next state		Output
	a = 0	a = 1	
→q ₁	q ₂₁	q ₃₁	
Q ₂₁	q ₂₂	q_{31}	Z_1
922	q_{22}	q ₃₁	Z_2
q ₃₁	921	q ₃₂	Z_1
932	921	932	Z_2

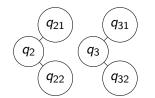


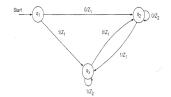


Present	a=0		Present a=0 a=1		=1
State	state	Output	State	Output	
$ ightarrow q_1$	q 2	Z_1	q 3	Z_1	
q_2	q_2	Z_2	q ₃	Z_1	
q 3	q ₂	Z_1	q 3	Z_2	

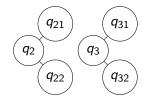


Present	a=0		a	=1
State	state Output		State	Output
$ ightarrow q_1$	q 2	Z_1	q 3	Z_1
q_2	q_2	Z_2	q ₃	Z_1
q ₃	q_2	Z_1	q 3	Z_2



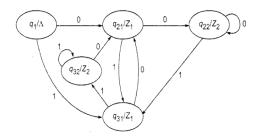


	Present a=0 a=		a=0		=1
	State	state	Output	State	Output
ľ	$ ightarrow q_1$	q 2	Z_1	q 3	Z_1
	q_2	q_2	Z_2	q ₃	Z_1
	q 3	q ₂	Z_1	q 3	Z_2



Present	a=0		a=1	
State	state	Output	State	Output
q_1	q 21	Z_1	q 31	Z_1
q_{21}	q 22	Z_2	q 31	Z_1
q 22	q 22	Z_2	q 31	Z_1
q 31	q 21	Z_1	q 32	Z_2
q 32	q 21	Z_1	q 32	Z_2

Present	Next State		Output
State	a=0	a=1	
q_1	q 21	q 31	
q_{21}	q ₂₂	q ₃₁	Z_1
q 22	q 22	q 31	Z_2
q 31	q 21	q 32	Z_1
q ₃₂	q ₂₁	q ₃₂	Z_2



• Consider the moore machine described by the transition table given:

Present	Next State		Output
State	a=0	a=1	
$ ightarrow q_1$	q_1	q ₂	0
q_2	q_1	q 3	0
q 3	q_1	q 3	1

Construct the corresponding mealy machine.

• Consider the moore machine described by the transition table given:

Present	Next State		Output
State	a=0	a=1	
$ ightarrow q_1$	q_1	q ₂	0
q_2	q_1	q 3	0
q 3	q_1	q 3	1

Construct the corresponding mealy machine.

Solution:

Present	a=0		a=1	
State	state	Output	State	Output
$ ightarrow q_1$	q_1	0	q ₂	0
q_2	q_1	0	q 3	1
q 3	q_1	0	q 3	1

• Consider the moore machine described by the transition table given:

Present	Next	Output	
State	a=0	a=1	
$ ightarrow q_1$	q_1	q ₂	0
q 2	q_1	q ₃	0
q 3	q_1	q 3	1

Construct the corresponding mealy machine.

Solution:

Present	a=0		a=1	
State	state	Output	State	Output
$ o q_1$	q_1	0	q ₂	0
q_2	q_1	0	q 3	1
q 3	q_1	0	q 3	1

Now, Find identical rows and remove one of them

• Consider the moore machine described by the transition table given:

Present	Next State		Output
State	a=0	a=1	
$ ightarrow q_1$	q_1	q ₂	0
q ₂	q_1	q 3	0
q 3	q_1	q 3	1

Construct the corresponding mealy machine.

Solution:

Present	a=0		a=1	
State	state	Output	State	Output
$ o q_1$	q_1	0	q ₂	0
q_2	q_1	0	q 3	1
q 3	q_1	0	q 3	1

Now, Find identical rows and remove one of them

Present	a=0		a=1	
State	state	Output	State	Output
$ ightarrow q_1$	q_1	0	q ₂	0
q_2	q_1	0	q_2	1

■ Equivalence: Two states q_1 and q_2 are equivalent(denoted by $q_1 \equiv q_2$), if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states or both of them are non-final states for all $x \in \Sigma^*$.

- Equivalence: Two states q_1 and q_2 are equivalent(denoted by $q_1 \equiv q_2$), if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states or both of them are non-final states for all $x \in \Sigma^*$.
- Precisely, Two states q_1 and q_2 are k-equivalent (k \geq 0), if both $\delta(q_1,x)$ and $\delta(q_2,x)$ are final states or both non-final states for all string x of length k or less.

- Equivalence: Two states q_1 and q_2 are equivalent(denoted by $q_1 \equiv q_2$), if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states or both of them are non-final states for all $x \in \Sigma^*$.
- Precisely, Two states q_1 and q_2 are k-equivalent (k \geq 0), if both $\delta(q_1,x)$ and $\delta(q_2,x)$ are final states or both non-final states for all string x of length k or less.
- If $\delta(q_1, w)$ and $\delta(q_2, w)$ are equivalent then
 - for |w| = 0, the states are 0-equivalent.
 - for |w| = 1, the states are 1-equivalent.
 - for |w| = 2, the states are 2-equivalent.

.

• for |w| = n, the states are n-equivalent.

- **Equivalence:** Two states q_1 and q_2 are equivalent(denoted by $q_1 \equiv q_2$), if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states or both of them are non-final states for all $x \in \Sigma^*$.
- Precisely, Two states q_1 and q_2 are k-equivalent (k \geq 0), if both $\delta(q_1, x)$ and $\delta(q_2, x)$ are final states or both non-final states for all string x of length k or less.
- If $\delta(q_1, w)$ and $\delta(q_2, w)$ are equivalent then
 - for |w| = 0, the states are 0-equivalent.
 - for |w| = 1, the states are 1-equivalent.
 - for |w| = 2, the states are 2-equivalent.
 - for |w| = n, the states are n-equivalent.
- Properties of Equivalence relations:
 - If a relation is equivalence or k-equivalence, then they are reflexive, symmetric and transitive.
 - If q_1 and q_2 are k-equivalent for all k > 0, then they are equivalent.
 - If q_1 and q_2 are (k+1)-equivalent, then they are k-equivalent.
 - $\pi_n = \pi_{n+1}$ for some n

 Construct a minimum state automaton equivalent to the given finite automaton

Solution:

1 Draw transition table

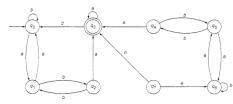
State \∑	0	1
$ ightarrow q_0$	q_1	q 5
q_1	q 6	q_2
@ 2	q 0	q 2
q 3	q_2	q 6
q_4	q_7	q_5
q 5	q_2	q 6
9 6	q 6	q_4
9 7	q 6	q_2

- 2 Find 0-equivalent set $\pi_0 = [q_0, q_1, q_3, q_4, q_5, q_6, q_7][q_2]$
- 3 Find 1-equivalent set $\pi_1 = [q_0, q_6, q_4][q_1, q_7][q_5, q_3][q_2]$
- 4 find 2-equivalent set $\pi_2 = [q_0, q_4][q_6][q_2][q_1, q_7][q_3, q_5]$
- 5 find 3-equivalent set $\pi_3 = [q_0, q_4][q_6][q_2][q_1, q_7][q_3, q_5]$

Therefore, M'=(Q',{ 0,1 },
$$\delta$$
, q'_0 ,F') where Q'={[q_2],[q_0 , q_4],[q_6],[q_1 , q_7],[q_3 , q_5]} q'_0 =[q_0 , q_4], F'=[q_2]

State $\setminus \Sigma$	0	1
$[q_0, q_4]$	$[q_1, q_7]$	$[q_3, q_5]$
$[q_1, q_7]$	$[q_{6}]$	$[q_2]$
[q ₂]	$[q_0, q_4]$	$[q_2]$
$[q_3, q_5]$	$[q_{2}]$	$[q_{6}]$
[q 6]	$[q_{6}]$	$[q_0, q_4]$

Construct a minimum state automaton equivalent to the given finite automaton



Solution:

State $\setminus \Sigma$	а	b
$ ightarrow q_0$	q_1	q 0
q_1	q_0	q 2
q_2	q 3	q_1
@ 3	q 3	q 0
q 4	q 3	q 5
q 5	q_6	q_4
q 6	q 5	q 6
q 7	q 6	q 3

- $\blacksquare \pi_0 = \{\{q_3\}\{q_0, q_1, q_2, q_4, q_5, q_6, q_7\}\}$
- $\blacksquare \pi_1 = \{\{q_3\}\{q_0, q_1, q_5, q_6\}\{q_2, q_4\}, \{q_7\}\}\}$
- $\pi_2 = \{\{q_3\}\{q_0, q_6\}\{q_1, q_5\}\{q_2, q_4\}\{q_7\}\}\}$
- $\pi_3 = \{\{q_3\}\{q_0, q_6\}\{q_1, q_5\}\{q_2, q_4\}\{q_7\}\}\}$

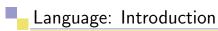
$$\therefore Q' = \{\{q_3\}\{q_0, q_6\}\{q_1, q_5\}\{q_2, q_4\}\{q_7\}\}\}$$
$$q'_0 = \{q_0, q_6\}$$

$$\mathsf{F'}{=}\{q_3\}$$

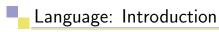
Now, make δ' and transition diagram.

Construct minimum state automaton equivalent to given automata M:

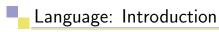
State $\setminus \Sigma$ a	b	
$ ightarrow q_0$	q_0	q 3
q_1	q_2	q_5
q_2	q_3	q_4
q_3	q_0	q_5
q_4	q_0	q 6
q 5	q_1	q_4
q_{6}	q_1	q 3



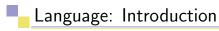
Language



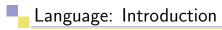
- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)



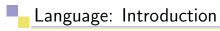
- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet



- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String

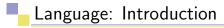


- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String A concatenation of finite symbols from the alphabet is called a string.



- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String A concatenation of finite symbols from the alphabet is called a string.

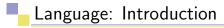
Example: If $\Sigma = \{a,b\}$ then a, abab, aaabb, abababababaaaaaaabaab, etc.



- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String A concatenation of finite symbols from the alphabet is called a string.

Example: If $\Sigma = \{a,b\}$ then a, abab, aaabb, abababababaaaaaaabaab, etc.

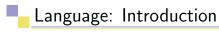
■ Empty String or Null String



- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String A concatenation of finite symbols from the alphabet is called a string.

Example: If $\Sigma = \{a,b\}$ then a, abab, aaabb, abababababaaaaaaabaab, etc.

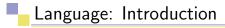
- Empty String or Null String \land or \land or ϕ \Longrightarrow A string with no symbols
- Words



- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String A concatenation of finite symbols from the alphabet is called a string.

Example: If $\Sigma = \{a,b\}$ then a, abab, aaabb, abababababaaaaaaabaab. etc.

- Empty String or Null String \land or \land or ϕ \Longrightarrow A string with no symbols
- Words \implies strings belonging to some language **Example:** If $\Sigma = \{x\}$ then a language L can be defined as $L = \{x^n : n = 1, 2, 3,\}$ or $L = \{x, xx, xxx,\}$ Here, x, xx, xxx, are the words of L.



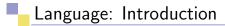
- Language
 - Formal (Syntactic Languages)
 - Informal (Semantic Languages)
- Alphabet
 - String A concatenation of finite symbols from the alphabet is called a string.

Example: If $\Sigma = \{a,b\}$ then a, abab, aaabb, abababababaaaaaabaab, etc.

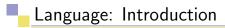
- Empty String or Null String \land or \land or ϕ \Longrightarrow A string with no symbols
- Words \implies strings belonging to some language **Example:** If $\Sigma = \{x\}$ then a language L can be defined as L= $\{x^n: n=1,2,3,....\}$ or L= $\{x,xx,xxx,....\}$

Here, x, xx, xxx ,.... are the words of L.

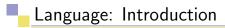
All words are strings but not all strings are words.



- Length of String: |S| \implies number of letters in the string. **Example:** $\Sigma = \{a,b\}$ If S = ababa, then |S| = 5
- Reverse of String: $S^r \implies$ Obtained by writing letters of 'S' in reverse order.



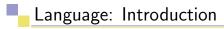
- Length of String: |S| \Longrightarrow number of letters in the string. **Example:** $\Sigma = \{a,b\}$ If S = ababa, then |S| = 5
- Reverse of String: $S^r \implies$ Obtained by writing letters of 'S' in reverse order. **Example:**
 - If s=abc over Σ ={a,b,c}



- Length of String: |S| \Longrightarrow number of letters in the string. **Example:** $\Sigma = \{a,b\}$ If S = ababa, then |S| = 5
- Reverse of String: $S^r \implies$ Obtained by writing letters of 'S' in reverse order.

Example:

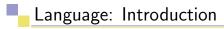
■ If s=abc over Σ ={a,b,c} Then, Rev(s) or s'=cba



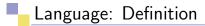
- Length of String: |S| \Longrightarrow number of letters in the string. **Example:** $\Sigma = \{a,b\}$ If S = ababa, then |S| = 5
- Reverse of String: $S^r \implies$ Obtained by writing letters of 'S' in reverse order.

Example:

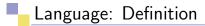
- If s=abc over $\Sigma = \{a,b,c\}$ Then, Rev(s) or s'=cba
- Σ={B,aB,bab,d} s=BaBbabBd



- Length of String: |S| \Longrightarrow number of letters in the string. **Example:** $\Sigma = \{a,b\}$ If S = ababa, then |S| = 5
- Reverse of String: $S^r \implies$ Obtained by writing letters of 'S' in reverse order.
 - Example:
 - If s=abc over $\Sigma = \{a,b,c\}$ Then, Rev(s) or s'=cba
 - Σ={B,aB,bab,d}
 s=BaBbabBd
 s'=dBbabaBB



- Descriptive Definition
- Recursive Definition
- Using Regular Expression
- Using Finite Automata, etc.



- Descriptive Definition
- Recursive Definition
- Using Regular Expression
- Using Finite Automata, etc.

The language is defined describing the conditions imposed on its words. **Example:**

The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$

- 1 The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\}$ $\implies L = \{b,c,ba,bb,bc,ca,cb,cc\}$

- 1 The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\}$ $\implies L = \{b,c,ba,\,bb,bc,ca,cb,cc\}$
- 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ \implies L= $\{00,01,02,10,22,12,...\}$

- 1 The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\}$ \implies L= $\{b,c,ba,bb,bc,ca,cb,cc\}$
- 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ \implies L= $\{00,01,02,10,22,12,...\}$
- 4 The language L of strings ending in 0 over $\Sigma = \{0,1\}$ L= $\{0,00,10,000,010,100,...\}$

The language is defined describing the conditions imposed on its words.

Example:

- 1 The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\}$ \implies L= $\{b,c,ba,bb,bc,ca,cb,cc\}$
- 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ \implies L= $\{00,01,02,10,22,12,...\}$
- 4 The language L of strings ending in 0 over $\Sigma = \{0,1\}$ L= $\{0,00,10,000,010,100,...\}$
- The language L of Strings with number of "a"(s) equal to number of "b"(s) over $\Sigma = \{a,b\}$
 - $L{=}\{\land, \ ab, aabb, abab, baba, abba,\}$

- Example:
 - The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
 - 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\} \implies L = \{b,c,ba,\,bb,bc,ca,cb,cc\}$
 - 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ $\implies L = \{00,01,02,10,22,12,...\}$
 - 4 The language L of strings ending in 0 over $\Sigma = \{0,1\}$ L= $\{0,00,10,000,010,100,...\}$
 - The language L of Strings with number of "a"(s) equal to number of "b"(s) over $\Sigma = \{a,b\}$
 - $L=\{\land, ab,aabb,abab,baba,abba,....\}$
 - **6** Language **Even-Even** of string with even number of a(s) and even number of b(s) over $\Sigma = \{a,b\}$ L= $\{\land$, aa,bb,aaaa,aabb,abab,... $\}$

- 1 The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\} \implies L = \{b,c,ba, bb,bc,ca,cb,cc\}$
- 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ \implies L= $\{00,01,02,10,22,12,...\}$
- 4 The language L of strings ending in 0 over $\Sigma = \{0,1\}$ L= $\{0,00,10,000,010,100,...\}$
- 5 The language L of Strings with number of "a"(s) equal to number of "b"(s) over Σ={a,b} L={∧, ab,aabb,abab,ababa,abba,....}
- 6 Language **Even-Even** of string with even number of a(s) and even number of b(s) over $\Sigma = \{a,b\}$ $L = \{\land, aa,bb,aaaa,aabb,abab,...\}$
- 7 Language Integer of strings over Σ =-,0,1,2,3,4,5,6,7,8,9 L={....., -2,-1,0,1,2,....}

The language is defined describing the conditions imposed on its words.

Example:

- The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\}$ $\implies L = \{b,c,ba,bb,bc,ca,cb,cc\}$
- 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ \implies L= $\{00,01,02,10,22,12,...\}$
- The language L of strings ending in 0 over $\Sigma = \{0,1\}$ L= $\{0,00,10,000,010,100,...\}$
- The language L of Strings with number of "a"(s) equal to number of "b"(s) over $\Sigma = \{a,b\}$
 - $L{=}\{\land, \, \mathsf{ab}, \! \mathsf{aabb}, \! \mathsf{abab}, \! \mathsf{baba}, \! \mathsf{abba}, \! \ldots\}$
- **6** Language **Even-Even** of string with even number of a(s) and even number of b(s) over $\Sigma = \{a,b\}$ L= $\{\land$, aa,bb,aaaa,aabb,abab,... $\}$
- 7 Language Integer of strings over Σ =-,0,1,2,3,4,5,6,7,8,9 L={....., -2,-1,0,1,2,....}
- 8 Language $\{a^nb^n\}$ over $\Sigma = \{a,b\}$ or $\{a^nb^n: n=1,2,3,....\}$ L= $\{ab,aabb,aaabbb,\}$

The language is defined describing the conditions imposed on its words.

Example:

- 1 The language L of strings of odd length, defined over $\Sigma = \{a\}$ $\implies L = \{a, aaa, aaaaa,\}$
- 2 The language L of strings that doesnot start with 'a' defined over $\Sigma = \{a,b,c\}$ $\implies L = \{b,c,ba,bb,bc,ca,cb,cc\}$
- 3 The language L of strings of length 2 over $\Sigma = \{0,1,2\}$ $\implies L = \{00,01,02,10,22,12,...\}$
- 4 The language L of strings ending in 0 over $\Sigma = \{0,1\}$ L= $\{0,00,10,000,010,100,...\}$
- The language L of Strings with number of "a"(s) equal to number of "b"(s) over $\Sigma = \{a,b\}$ L= $\{\land$, ab,aabb,abab,abba,abba,.... $\}$
- 6 Language **Even-Even** of string with even number of a(s) and even number of b(s) over $\Sigma = \{a,b\}$ $L = \{\land, aa,bb,aaaa,aabb,abab,...\}$
- **7** Language Integer of strings over Σ =-,0,1,2,3,4,5,6,7,8,9 L={....., -2,-1,0,1,2,....}
- B Language $\{a^nb^n\}$ over $\Sigma = \{a,b\}$ or $\{a^nb^n : n=1,2,3,....\}$ L= $\{ab,aabb,aaabbb,\}$
- 9 Palindrome over $\Sigma = \{a,b\}$ $L = \{\land, a,b, aa,bb, aaa,aba,bab,bbb,....\}$

- A grammar is (V_N, Σ, P, S) where V_N is a non-empty set whose elements are called variables.
 - Σ finite non-empty set whose elements are called terminals. S is aspecial symbol called Start Symbol. P are set of Production rules.
- $V_N \cap \Sigma = \phi$

- A grammar is (V_N, Σ, P, S) where V_N is a non-empty set whose elements are called variables.
 - Σ finite non-empty set whose elements are called terminals.
 - S is aspecial symbol called Start Symbol.
 - P are set of Production rules.
- $V_N \cap \Sigma = \phi$

Example

 $\langle adverb \rangle \rightarrow fast$

```
 \begin{aligned} \mathsf{G} &= \{V_N, \Sigma, P, S\} \text{ is a Grammar, where } \\ V_N &= \{\langle \mathsf{sentence} \rangle, \langle \mathsf{noun} \rangle, \langle \mathsf{verb} \rangle, \langle \mathsf{adverb} \rangle \}, \ \Sigma &= \{\mathsf{Ram}, \mathsf{Sam}, \mathsf{ran}, \mathsf{sang}, \mathsf{fast} \}, \\ \mathsf{S} &= \langle \mathsf{sentence} \rangle \\ \mathsf{P} \text{ consists of following productions:} \\ &\langle \mathsf{sentence} \rangle &= \langle \mathsf{noun} \rangle &\langle \mathsf{verb} \rangle \\ &\langle \mathsf{sentence} \rangle &= \langle \mathsf{noun} \rangle &\langle \mathsf{verb} \rangle &\langle \mathsf{adverb} \rangle \\ &\langle \mathsf{noun} \rangle &\to \mathsf{Ram} \\ &\langle \mathsf{noun} \rangle &\to \mathsf{Sam} \\ &\langle \mathsf{verb} \rangle &\to \mathsf{ran} \\ &\langle \mathsf{verb} \rangle &\to \mathsf{sang} \end{aligned}
```


■ If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G).

■ If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1\to 00S11\to 000S111.....0^nS1^n$ $0^n\wedge 1^n=0^n1^n\in L(G)$ for $n\geq 0$ $\therefore L(G)=\{0^n1^n\mid n\geq 0\}$

Grammar

- If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1\to 00S11\to 000S111.....0^nS1^n$ $0^n\wedge 1^n=0^n1^n\in L(G)$ for $n\geq 0$ $\therefore L(G)=\{0^n1^n\mid n\geq 0\}$
- If $G=(\{S\},\{a\},\{S\to SS\},S)$, Find the language generated by G.

- Grammar

- If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1\to 00S11\to 000S111.....0^nS1^n$ $0^n\wedge 1^n=0^n1^n\in L(G)$ for $n\geq 0$ $\therefore L(G)=\{0^n1^n\mid n\geq 0\}$
- \blacksquare If G=({S},{a},{S \to SS},S), Find the language generated by G.

Solution: $L(G) = \phi$

Grammar

- If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1\to 00S11\to 000S111.....0^nS1^n$ $0^n\wedge 1^n=0^n1^n\in L(G)$ for $n\geq 0$ $\therefore L(G)=\{0^n1^n\mid n\geq 0\}$
- If $G=(\{S\},\{a\},\{S\to SS\},S)$, Find the language generated by G.

Solution: $L(G) = \phi$

■ Let $G=(\{S,C\},\{a,b\},P,S)$, where P consists of S $\rightarrow aCa, C \rightarrow aCa$ |b. Find L(G).

- If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1\to 00S11\to 000S111.....0^nS1^n$ $0^n\wedge 1^n=0^n1^n\in L(G)$ for $n\geq 0$ $\therefore L(G)=\{0^n1^n\mid n\geq 0\}$
- \blacksquare If G=({S},{a},{S \to SS},S), Find the language generated by G.

Solution: $L(G) = \phi$

■ Let $G=(\{S,C\},\{a,b\},P,S)$, where P consists of S $\rightarrow aCa, C \rightarrow aCa \mid b$. Find L(G). Solution: S \implies aCa \implies aba . So, aba \in L(G)

- If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1\to 00S11\to 000S111....0^nS1^n$ $0^n\wedge 1^n=0^n1^n\in L(G)$ for $n\geq 0$ $\therefore L(G)=\{0^n1^n\mid n\geq 0\}$
- If $G=(\{S\},\{a\},\{S\to SS\},S)$, Find the language generated by G.

Solution: $L(G) = \phi$

■ Let $G=(\{S,C\},\{a,b\},P,S)$, where P consists of S $\rightarrow aCa, C \rightarrow aCa \mid b$. Find L(G).

Solution: S \Longrightarrow aCa \Longrightarrow aba . So, aba $\in L(G)$ S \Longrightarrow aCa $(using S \rightarrow aCa)$ \Longrightarrow a^nCa^n $(using S \rightarrow aCa (n-1) times)$

- Grammar

- If $G=(\{S\},\{0,1\},\{S\to 0S1,S\to \wedge\},S)$. Find L(G). **Solution:** $S\to 0S1 \to 00S11 \to 000S111.....0^nS1^n$ $0^n \wedge 1^n = 0^n1^n \in L(G)$ for $n \ge 0$ $\therefore L(G) = \{0^n1^n \mid n > 0\}$
- \blacksquare If G=({S},{a},{S \to SS},S), Find the language generated by G.

Solution: $L(G) = \phi$

■ Let $G=(\{S,C\},\{a,b\},P,S)$, where P consists of S $\rightarrow aCa$, $C \rightarrow aCa$ |b. Find L(G).

Solution: S \Longrightarrow aCa \Longrightarrow aba . So, aba \in L(G) S \Longrightarrow aCa $(using S \rightarrow aCa)$ \Longrightarrow a^nCa^n $(using S \rightarrow aCa (n-1) times)$ \Longrightarrow a^nba^n $(using C \rightarrow b)$ Hence, $a^nba^n \in$ L(G), where $n \ge 1$ \therefore L(G)= $\{a^nba^n | n > 1\}$

Exercise

Construct a grammar G so that $L(G) = \{a^nba^m \mid n, m \ge 1\}$

Exercise

Construct a grammar G so that $L(G) = \{a^nba^m \mid n, m \ge 1\}$

■ If G is S \rightarrow aS |bS |a |b, Find L(G).

Grammar

Exercise

Construct a grammar G so that $L(G) = \{a^nba^m \mid n, m \ge 1\}$

■ If G is S \rightarrow aS |bS |a |b, Find L(G). Solution: L(G)= $\{a,b\}^+$

- Grammar

Exercise

Construct a grammar G so that $L(G) = \{a^nba^m \mid n, m \ge 1\}$

■ If G is S \rightarrow aS |bS |a |b, Find L(G). Solution: L(G)= $\{a,b\}^+$

Exercise 1

If G is S \rightarrow aS |a, then show that L(G)= $\{a\}^+$

- Grammar

Exercise

Construct a grammar G so that $L(G) = \{a^nba^m \mid n, m \ge 1\}$

• If G is S → aS |bS |a |b, Find L(G).
Solution: L(G)={a, b}⁺

Exercise 1

If G is S \rightarrow aS |a, then show that L(G)= $\{a\}^+$

Let L be the set of all palindromes over {a,b}. Construct a grammar G generating L.

Exercise

Construct a grammar G so that $L(G) = \{a^nba^m \mid n, m \ge 1\}$

If G is S → aS |bS |a |b, Find L(G).
Solution: L(G)={a, b}⁺

Exercise 1

If G is S \rightarrow aS |a, then show that L(G)= $\{a\}^+$

Let L be the set of all palindromes over {a,b}. Construct a grammar G generating L.

Solution: \wedge , a, b, or axa and bxb are palindromes.

Exercise

Construct a grammar G so that $L(G) = \{a^n b a^m \mid n, m \geq 1\}$

■ If G is S \rightarrow aS |bS |a |b, Find L(G). **Solution:** $L(G) = \{a, b\}^+$

Exercise 1

If G is S \rightarrow aS |a, then show that L(G)= $\{a\}^+$

Let L be the set of all palindromes over {a,b}. Construct a grammar G generating L.

Solution: \land , a, b, or axa and bxb are palindromes.

$$S \rightarrow \wedge$$

$$S \rightarrow a, S \rightarrow b$$

$$\mathsf{S} \to \mathsf{aSa}, \, \mathsf{S} \to \mathsf{bSb}$$

Thus,
$$G=(\{S\},\{a,b\},P,S)$$

■ Construct a Grammar generating L={ $wcw^T | w \in \{a, b\}^*$ }

■ Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L= $\{a^nb^nc^i \mid n \geq 1, i \geq 0\}$

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L= $\{a^nb^nc^i \mid n \ge 1, i \ge 0\}$ Solution: L= $L_1 \cup L_2, L_1 = \{a^nb^n \mid n \ge 1\}$

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L= $\{a^nb^nc^i \mid n \geq 1, i \geq 0\}$ **Solution:** L= $L_1 \cup L_2$, L_1 = $\{a^nb^n \mid n \geq 1\}$ L_2 = $\{a^nb^nc^i \mid n \geq 1, i \geq 1\}$

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L= $\{a^nb^nc^i \mid n \geq 1, i \geq 0\}$ **Solution:** L= $L_1 \cup L_2$, $L_1 = \{a^nb^n \mid n \geq 1\}$ $L_2 = \{a^nb^nc^i \mid n \geq 1, i \geq 1\}$ Let "P" be as follows: S \rightarrow A A \rightarrow ab \mid aAb

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L= $\{a^nb^nc^i \mid n \geq 1, i \geq 0\}$ **Solution:** L= $L_1 \cup L_2$, $L_1 = \{a^nb^n \mid n \geq 1\}$ $L_2 = \{a^nb^nc^i \mid n \geq 1, i \geq 1\}$ Let "P" be as follows: S \rightarrow A

$$A \rightarrow ab \mid aAb$$

$$\mathsf{S} o \mathsf{Sc}$$

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L= $\{a^nb^nc^i \mid n \ge 1, i \ge 0\}$ **Solution:** L= $L_1 \cup L_2$, $L_1 = \{a^nb^n \mid n \ge 1\}$ $L_2 = \{a^nb^nc^i \mid n \ge 1, i \ge 1\}$ Let "P" be as follows: S \rightarrow A A \rightarrow ab |aAb S \rightarrow Sc Let G=($\{S,A\}, \{a,b,c\}, P,S\}$) for n > 1, i > 0

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L={ $a^nb^nc^i \mid n \ge 1$, $i \ge 0$ }

 Solution: L= $L_1 \cup L_2$, L_1 ={ $a^nb^n \mid n \ge 1$ } L_2 ={ $a^nb^nc^i \mid n \ge 1$, $i \ge 1$ }

 Let "P" be as follows:

 S \rightarrow A

 A \rightarrow ab |aAb

 S \rightarrow Sc

 Let G=({S,A}, {a,b,c}, P,S) for $n \ge 1$, $i \ge 0$ S $\stackrel{*}{\rightarrow}$ Sc $^i \rightarrow Ac^i \rightarrow a^{n-1}Ab^{n-1}c^i \rightarrow a^{n-1}abb^{n-1}c^i = a^nb^nc^i$

- Construct a Grammar generating L={wcw^T |w ∈ {a, b}*} Solution: Let G=({S},{a,b,c},P,S) where P is defined as $S \rightarrow aSa |bSb|c$
- Find a grammar generating L={ $a^nb^nc^i \mid n \geq 1$, $i \geq 0$ }

 Solution: L= $L_1 \cup L_2$, L_1 ={ $a^nb^n \mid n \geq 1$ } L_2 ={ $a^nb^nc^i \mid n \geq 1$, $i \geq 1$ }

 Let "P" be as follows:

 S \rightarrow A

 A \rightarrow ab |aAb

 S \rightarrow Sc

 Let G=({S,A}, {a,b,c}, P,S) for $n \geq 1$, $i \geq 0$ S $\stackrel{*}{\rightarrow}$ Sc $^i \rightarrow Ac^i \rightarrow a^{n-1}Ab^{n-1}c^i \rightarrow a^{n-1}abb^{n-1}c^i = a^nb^nc^i$ L(G)={ $a^nb^nc^i \mid n \geq 1$, $i \geq 0$ }

• Find a grammar generating $\{a^j b^n c^n \mid n \geq 1, j \geq 0 \}$

$$\{a^{j}b^{n}c^{n} \mid n \geq 1, j \geq 0\}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$

where "P" consists of:

$$\mathsf{S} \to \mathsf{aS} \mid \! \mathsf{A}$$

$$\mathsf{A} \to \mathsf{bAc} \mid \! \mathsf{bc}$$

$$\{a^jb^nc^n\mid n\geq 1, j\geq 0\}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$

where "P" consists of:

$$\mathsf{S} \to \mathsf{aS} \ | \mathsf{A}$$

$$A \rightarrow bAc \mid bc$$

■ Let G =({S,A},{0,1,2},P,S) where P consists of S
$$\rightarrow$$
 0SA2 |S \rightarrow 012

$$2\mathsf{A}\to\mathsf{A}2$$

1A
$$\rightarrow$$
 11. Show that L(G)= $\{0^n1^n2^n \mid n \geq 1\}$

$$\{a^{j}b^{n}c^{n} \mid n \geq 1, j \geq 0 \}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$ where "P" consists of:

$$S \rightarrow aS | A$$

$$\mathsf{A} \to \mathsf{bAc} \mid \! \mathsf{bc}$$

■ Let
$$G = (\{S,A\},\{0,1,2\},P,S)$$
 where P consists of $S \rightarrow 0SA2 \mid S \rightarrow 012$

$$2A \rightarrow A2$$

$$1A \to 11$$
. Show that $L(G) = \{0^n 1^n 2^n \mid n \ge 1\}$

Solution:
$$S \stackrel{*}{\rightarrow} 0^{n-1} S(A2)^{n-1}$$
 by applying $S \rightarrow 0SA2$ (n-1)

$$\{a^jb^nc^n\mid n\geq 1, j\geq 0\}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$

where "P" consists of:

$$\mathsf{S} \to \mathsf{aS} \ | \mathsf{A}$$

$$A \rightarrow bAc \mid bc$$

• Let
$$G = (\{S,A\},\{0,1,2\},P,S)$$
 where P consists of

$$S \rightarrow 0SA2 \mid S \rightarrow 012$$

$$2\mathsf{A}\to\mathsf{A}2$$

$$1A \to 11$$
. Show that L(G)= $\{0^n 1^n 2^n | n > 1\}$

Solution:
$$S \stackrel{*}{\to} 0^{n-1} S(A2)^{n-1}$$
 by applying $S \to 0SA2$ (n-1)

$$ightarrow 0^n 12 (A2)^{n-1}$$
 by applying S $ightarrow 012$

$$\{a^jb^nc^n\mid n\geq 1, j\geq 0\}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$

where "P" consists of:

$$S \to aS \ |A$$

$$A \rightarrow bAc \mid bc$$

■ Let $G = (\{S,A\},\{0,1,2\},P,S)$ where P consists of

$$\text{S} \rightarrow \text{0SA2} \; | \text{S} \rightarrow \text{012}$$

$$2\mathsf{A}\to\mathsf{A}2$$

$$1A \to 11$$
. Show that $L(G) = \{0^n 1^n 2^n \mid n > 1\}$

Solution: $S \stackrel{*}{\to} 0^{n-1} S(A2)^{n-1}$ by applying $S \to 0SA2$ (n-1)

$$\rightarrow 0^{n}12(A2)^{n-1}$$
 by applying S $\rightarrow 012$

$$\stackrel{*}{\to} 0^n 1 A^{n-1} 2^n$$
 by applying $2A \to A2$ several times

$$\{a^jb^nc^n\mid n\geq 1, j\geq 0\}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$

where "P" consists of:

$$\mathsf{S} \to \mathsf{aS} \ | \mathsf{A}$$

$$\mathsf{A} \to \mathsf{bAc} \mid \! \mathsf{bc}$$

■ Let $G = (\{S,A\},\{0,1,2\},P,S)$ where P consists of

$$\text{S} \rightarrow \text{0SA2} \; | \text{S} \rightarrow \text{012}$$

$$2\mathsf{A}\to\mathsf{A}2$$

$$1A \to 11$$
. Show that L(G)= $\{0^n 1^n 2^n | n > 1\}$

Solution: $S \stackrel{*}{\to} 0^{n-1} S(A2)^{n-1}$ by applying $S \to 0SA2$ (n-1)

$$\rightarrow 0^{n}12(A2)^{n-1}$$
 by applying S $\rightarrow 012$

$$\stackrel{*}{\rightarrow} 0^n 1 A^{n-1} 2^n$$
 by applying 2A \rightarrow A2 several times

$$\stackrel{*}{ o} 0^n 1^n 2^n$$
 by applying 1A o 11 (n-1 times)

- Grammar

■ Find a grammar generating

$$\{a^jb^nc^n\mid n\geq 1,\, j\geq 0\;\}$$

Solution: Let $G=(\{S,A\},\{a,b,c\},P,S)$

where "P" consists of:

$$\mathsf{S} \to \mathsf{aS} \ | \mathsf{A}$$

$$\mathsf{A} \to \mathsf{bAc} \mid \! \mathsf{bc}$$

■ Let $G = (\{S,A\},\{0,1,2\},P,S)$ where P consists of $S \rightarrow 0SA2 \mid S \rightarrow 012$

$$2A \rightarrow A2$$

$$1A \to 11$$
. Show that L(G)= $\{0^n 1^n 2^n | n > 1\}$

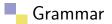
Solution: $S \stackrel{*}{\to} 0^{n-1} S(A2)^{n-1}$ by applying $S \to 0SA2$ (n-1)

$$\rightarrow 0^{n}12(A2)^{n-1}$$
 by applying S $\rightarrow 012$

$$\stackrel{*}{\rightarrow} 0^n 1 A^{n-1} 2^n$$
 by applying 2A \rightarrow A2 several times

$$\stackrel{*}{ o}$$
 0ⁿ1ⁿ2ⁿ by applying 1A \rightarrow 11 (n-1 times)

$$\therefore 0^n 1^n 2^n \in \mathsf{L}(\mathsf{G}) \text{ for all } \mathsf{n} \geq 1$$



lacktriangle Construct grammar G generating $\{a^nb^nc^n\mid n\geq 1\}$

■ Construct grammar G generating $\{a^nb^nc^n \mid n \ge 1\}$ **Solution:** $G=(\{S,B,C\},\{a,b,c\},P,S)$ where P consists of: $S \to aSBC \mid aBC$, $CB \to BC$, $aB \to ab$, $bB \to bb$, $bC \to bc$, $cC \to cc$ $S \Longrightarrow aBC \Longrightarrow abC \Longrightarrow abc$

- Construct grammar G generating $\{a^nb^nc^n \mid n \ge 1\}$ **Solution:** $G=(\{S,B,C\},\{a,b,c\},P,S)$ where P consists of: $S \to aSBC \mid aBC$, $CB \to BC$, $aB \to ab$, $bB \to bb$, $bC \to bc$, $cC \to cc$ $S \Longrightarrow aBC \Longrightarrow abC \Longrightarrow abc$
- Construct a grammar G generating $\{xx \mid x \in \{a, b\}^*\}$

- Construct grammar G generating $\{a^nb^nc^n \mid n \ge 1\}$ **Solution:** $G=(\{S,B,C\},\{a,b,c\},P,S)$ where P consists of: $S \to aSBC \mid aBC$, $CB \to BC$, $aB \to ab$, $bB \to bb$, $bC \to bc$, $cC \to cc$ $S \Longrightarrow aBC \Longrightarrow abC \Longrightarrow abc$
- Construct a grammar G generating $\{xx \mid x \in \{a,b\}^*\}$ **Solution:** Let G is as follows: $G=(\{S,D,E,F,A,B\},\{a,b\},P,S)$ where P consists of : $S \to DEF$ $DE \to aDA$, $DE \to bDB$ $AF \to EaF$, $BF \to EbF$ $Aa \to aA$, $Ab \to bA$, $Ba \to aB$, $Bb \to bB$ $aE \to Ea$, $bE \to Eb$ $DE \to \land$. $F \to \land$

■ Let $G=(\{S,A,B\},\{a,b\},P,S)$ where P consists of $S \to aABa$, $A \to baABb$, $B \to Aab$, $aA \to baa$, $bBb \to abab$. Test whether w = baabbabaaabbaba is in L(G).

■ Let $G=(\{S,A,B\},\{a,b\},P,S)$ where P consists of $S \to aABa$, $A \to baABb$, $B \to Aab$, $aA \to baa$, $bBb \to abab$. Test whether w = baabbabaaabbaba is in L(G).

Solution: $S \rightarrow \underline{aA}Ba$

 \Longrightarrow baa \underline{B} a

 \Longrightarrow baa $\underline{\mathsf{A}}$ aba

 \implies baab<u>aA</u>Bbaba

 \implies baabbaa $\underline{\mathsf{B}}$ baba

 \implies baabba $\underline{a}\underline{A}$ abbaba

⇒ baabbabaaabbaba=w

 \therefore w \in L(G)

Grammar

■ Let $G=(\{S,A,B\},\{a,b\},P,S)$ where P consists of $S \to aABa$, $A \to baABb$, $B \to Aab$, $aA \to baa$, $bBb \to abab$. Test whether w = baabbabaaabbaba is in L(G).

Solution: $S \rightarrow \underline{aA}Ba$

$$\implies$$
 baa Ba

$$\implies$$
 baa $\underline{\mathsf{A}}$ aba

$$\implies$$
 baaba $ABbaba$

$$\implies$$
 baabbaa $\underline{\mathsf{B}}$ baba

$$\therefore$$
 w \in L(G)

- If the grammar G is given by the productions $S \rightarrow aSa \mid bSb \mid aa \mid bb \mid \land$, show that:
 - L(G) has no strings of odd length
 - Any string in L(G) is of length 2n, $n \ge 0$
 - The number of strings of length 2n is 2^n

- Chomsky classified grammar into 4 types i.e. (type 0-3)
- A type 0 grammar is any phrase structure grammar without any restrictions
 - \implies All grammar we have considered till now are type 0 grammar
- In a production of form $\phi A \psi \rightarrow \phi \alpha \psi$ Example:
 - lacktriangledown abAbcd ightarrow abAbcd
 - $\phi \implies \mathsf{ab}$
 - $\alpha \implies AB$
 - $\psi \implies \mathit{bcd}$
 - \blacksquare AC \rightarrow A
 - $\phi \implies A$
 - $\alpha \implies \wedge$
 - $\psi \implies \wedge$

- \blacksquare C \rightarrow \land
 - $\phi \implies \wedge$
 - $\alpha \implies \wedge$
 - $\psi \implies \land$

■ A production of the form $\phi A \psi \rightarrow \phi \alpha \psi$ is called Type-1 production or Context-sensitive Language, if $\alpha \neq \wedge$ \implies In type-1 production erasing 'A' is not allowed

- A production of the form $\phi A \psi \rightarrow \phi \alpha \psi$ is called Type-1 production or Context-sensitive Language, if $\alpha \neq \wedge$ \Rightarrow In type-1 production erasing 'A' is not allowed **Example:**
 - aAbCD \rightarrow abcDbcD is a type 1 production. A is replaced by bcD $\neq \land$
 - $AB \rightarrow AbBc$ is a type 1 production.
 - $\blacksquare \ \, \mathsf{A} \to \mathsf{abA} \ \mathsf{is} \ \mathsf{a} \ \mathsf{type} \ 1 \ \mathsf{production}.$
- A grammar is called type 1 or Context sensitive or Context-dependent if all its productions are type 1 productions.

- A production of the form $\phi A \psi \rightarrow \phi \alpha \psi$ is called Type-1 production or Context-sensitive Language, if $\alpha \neq \wedge$ \Rightarrow In type-1 production erasing 'A' is not allowed **Example:**
 - a<u>A</u>bCD \rightarrow a<u>bcD</u>bcD is a type 1 production. A is replaced by bcD $\neq \land$
 - $AB \rightarrow AbBc$ is a type 1 production.
 - \blacksquare A \rightarrow abA is a type 1 production.
- A grammar is called type 1 or Context sensitive or Context-dependent if all its productions are type 1 productions.
- The production $S \to \wedge$ is also allowed in type 1 grammar, but in this case S does not appear on the right-hand side of any production.

- A production of the form $\phi A \psi \to \phi \alpha \psi$ is called Type-1 production or Context-sensitive Language, if $\alpha \neq \wedge$ \Rightarrow In type-1 production erasing 'A' is not allowed **Example:**
 - aAbCD → abcDbcD is a type 1 production.
 A is replaced by bcD ≠ ∧
 - $AB \rightarrow AbBc$ is a type 1 production.
 - \blacksquare A \to abA is a type 1 production.
- A grammar is called type 1 or Context sensitive or Context-dependent if all its productions are type 1 productions.
- The production $S \to \wedge$ is also allowed in type 1 grammar, but in this case S does not appear on the right-hand side of any production.
- The language generated by a type-1 grammar is called a type-1 or context-sensitive language

■ A grammar $G = (V_N, \Sigma, P, S)$ is monotonic (or length-increasing) if every production in P is of the form $\alpha \to \beta$ with $|\alpha| \le |\beta|$ for $S \to \wedge$. In second case, S does not appear on right-hand side of any production in P.

- A grammar $G = (V_N, \Sigma, P, S)$ is monotonic (or length-increasing) if every production in P is of the form $\alpha \to \beta$ with $|\alpha| \le |\beta|$ for $S \to \wedge$. In second case, S does not appear on right-hand side of any production in P.
- Type-2: Context free Grammar generates context free language
- A Type-2 production is a production of the form A $\rightarrow \alpha$ where A $\in V_N$ and $\alpha \in (V_N \vee \Sigma)^*$

- A grammar $G = (V_N, \Sigma, P, S)$ is monotonic (or length-increasing) if every production in P is of the form $\alpha \to \beta$ with $|\alpha| \le |\beta|$ for $S \to \wedge$. In second case, S does not appear on right-hand side of any production in P.
- Type-2: Context free Grammar generates context free language
- A Type-2 production is a production of the form A $\rightarrow \alpha$ where A $\in V_N$ and $\alpha \in (V_N \vee \Sigma)^*$
- In other words, in Type-2 ⇒
 - It should be in Type-1
 - \blacksquare L.H.S. production should have only 1 variable i.e. |A|=1 and there is no restriction on α

Example: S \rightarrow Aa, A \rightarrow a, B \rightarrow abc, A \rightarrow \land are type-2 productions.

- A production of the form A \rightarrow a or A \rightarrow aB, where A,B \in V_N and a \in Σ is called a type-3 production.
- A grammar is called a type-3 or Regular Grammar if all its productions are type-3 productions.
- A production $S \to \wedge$ is allowed in type-3 grammar, but in this case S does not appear on the right-hand side of any production

- **1** Find the highest type number which can be applied to the following productions:
 - $\blacksquare \ \mathsf{S} \to \mathsf{Aa}, \ \mathsf{A} \to \mathsf{c} \ | \mathsf{Ba}, \ \mathsf{B} \to \mathsf{abc}$
 - $\blacksquare \ \mathsf{S} \to \mathsf{ASB} \ | \mathsf{d}, \ \mathsf{A} \to \mathsf{aA}$
 - ${\color{red} \blacksquare} \ \, \mathsf{S} \to \mathsf{aS} \,\, | \mathsf{ab}$
- 2 Differentiate between Recursive Set and Recursively Enumerable Set
- 3 Prove that Context-sensitive language is recursive.
- 4 Prove that there exists a recursive set which is not a contxt-sensitive language over $\{0,1\}$.
- **5** Let $G=(\{A,B,S\},\{0,1\},P.S)$ where P consists of S → 0AB, A0 → S0B, A1 →SB1, B →SA, B →01. Show that $L(G)=\phi$.
- 6 Find the language generated by grammar S \rightarrow AB, A \rightarrow A1 |0, B \rightarrow 2B |3. Can the above language be generated by a grammar of higher type?

- **7** Construct a grammar which generates all even integer upto 998.
- 8 Construct CFG to generate the following:

 - \blacksquare { $a^lb^mc^n$ |one of l,m,n equals 1 and remaining tqo are equal}

 - \blacksquare The set of all strings over $\{0,1\}$ containing twice as many 0's and 1's
- **9** Show that $G_1 = (\{S\}, \{a,b\}, P_1, S)$ where $P_1 = \{S \rightarrow aSb \mid ab\}$ is equivalent to $G_2 = (\{S,A,B,C\}, \{a,b\}, P_2, S)$, where P_2 consists of $S \rightarrow AC$, $C \rightarrow SB$, $S \rightarrow AB$, $A \rightarrow a, B \rightarrow b$
- What are the applications of different grammar types?

- A language is regular if there exists a finite acceptor for it
 - \therefore Every regular language can be described as DFA or NDFA

- A language is regular if there exists a finite acceptor for it
 ∴ Every regular language can be described as DFA or NDFA
- Regular Expression: Algebraic description of languages

- A language is regular if there exists a finite acceptor for it
 ∴ Every regular language can be described as DFA or NDFA
- Regular Expression: Algebraic description of languages
- Let Σ be a given alphabet, then:
 - **1** ϕ, \wedge and $a \in \Sigma$ are all regular expressions, called **Primitive regular** expressions.
 - 2 If R_1 and R_2 are regular expressions, so are $R_1 + R_2, R_1, R_2, R_1^*$ and (R_1)
 - 3 A string is a regular expression if and only if it can be derived from primitive regular expressions by a finite number of applications of the rules in (2)

Regular Expression

- A language is regular if there exists a finite acceptor for it
 ∴ Every regular language can be described as DFA or NDFA
- Regular Expression: Algebraic description of languages
- Let Σ be a given alphabet, then:
 - **1** ϕ, \wedge and $a \in \Sigma$ are all regular expressions, called **Primitive regular** expressions.
 - 2 If R_1 and R_2 are regular expressions, so are $R_1 + R_2, R_1, R_2, R_1^*$ and (R_1)
 - 3 A string is a regular expression if and only if it can be derived from primitive regular expressions by a finite number of applications of the rules in (2)
- **Example:** For $\Sigma = \{a,b,c\}$, the string $(a+b.c)^*.(c+\phi)$ is a regular expression while (a+b+) is not a regular expression.

The language L(R) denoted by any regular expression 'R' is defined by following rules

- $\mathbf{1}$ ϕ is a R.E. denoting empty set
- **3** For every $a \in \Sigma$, **a** is a R.E. denoting $\{a\}$ If R_1 and R_2 are R.E. , then
- 4 $L(R_1+R_2)=L(R_1)\vee L(R_2)$
- 5 $L(R_1.R_2)=L(R_1)L(R_2)$
- 6 $L((R_1))=L(R_1)$
- 7 $L(R_1^*)=(L(R_1))^*$

The language L(R) denoted by any regular expression 'R' is defined by following rules

- $\mathbf{1}$ ϕ is a R.E. denoting empty set
- \land is a R.E. denoting $\{\land\}$
- 3 For every $a \in \Sigma$, **a** is a R.E. denoting $\{a\}$ If R_1 and R_2 are R.E. , then
- 4 $L(R_1+R_2)=L(R_1)\vee L(R_2)$
- 5 $L(R_1.R_2)=L(R_1)L(R_2)$
- 6 $L((R_1))=L(R_1)$
- 7 $L(R_1^*)=(L(R_1))^*$

Example: For $\Sigma = \{a,b\}$, the expression

 $R=(a+b)^*(a+bb)$ is regular

The language L(R) denoted by any regular expression 'R' is defined by following rules

- f 1 ϕ is a R.E. denoting empty set
- **3** For every $a \in \Sigma$, **a** is a R.E. denoting $\{a\}$ If R_1 and R_2 are R.E. , then
- 4 $L(R_1+R_2)=L(R_1)\vee L(R_2)$
- 5 $L(R_1.R_2)=L(R_1)L(R_2)$
- 6 $L((R_1))=L(R_1)$
- 7 $L(R_1^*)=(L(R_1))^*$

Example: For $\Sigma = \{a,b\}$, the expression

 $R=(a+b)^*(a+bb)$ is regular

$$\implies$$
 L(R)={a,bb,aa,abb,ba,bbb,....}

The language L(R) denoted by any regular expression 'R' is defined by following rules

- **11** ϕ is a R.E. denoting empty set
- \land is a R.E. denoting $\{\land\}$
- **3** For every $a \in \Sigma$, **a** is a R.E. denoting $\{a\}$ If R_1 and R_2 are R.E., then
- 4 $L(R_1+R_2)=L(R_1)\vee L(R_2)$
- 5 $L(R_1.R_2)=L(R_1)L(R_2)$
- 6 $L((R_1))=L(R_1)$
- 7 $L(R_1^*)=(L(R_1))^*$

Example: For $\Sigma = \{a,b\}$, the expression

 $R=(a+b)^*(a+bb)$ is regular

$$\implies L(R)=\{a,bb,aa,abb,ba,bbb,....\}$$

 \implies L(R) is the set of all strings on $\{a,b\}$, terminated by either

'a' or 'bb'.

 $\blacksquare R = (aa)^* (bb)^* b$

■ R=(aa)*(bb)*b
denotes the set of all strings with even number of a's followed
by an odd number of b's

■ R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n>0, m>0\}$

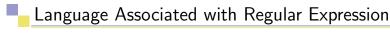
- R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n\geq 0, m\geq 0\}$
- For $\Sigma = \{0,1\}$. Give a regular expression 'R' such that $L(R) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeroes}\}$

- R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n\geq 0, m\geq 0\}$
- For $\Sigma = \{0,1\}$. Give a regular expression 'R' such that $L(R) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeroes} \}$ Solution: $R = (0+1)^*00(0+1)^*$

- R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n\geq 0, m\geq 0\}$
- For $\Sigma = \{0,1\}$. Give a regular expression 'R' such that $L(R) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeroes} \}$ Solution: $R = (0+1)^* 00(0+1)^*$
- Find R.E. for language $L=\{w \in \{0,1\}^* \mid w \text{ has no pair of consecutive zeroes}\}$

- R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n>0, m>0\}$
- For $\Sigma = \{0,1\}$. Give a regular expression 'R' such that $L(R) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeroes} \}$ Solution: $R = (0+1)^*00(0+1)^*$
- Find R.E. for language $L=\{w\in\{0,1\}^*\mid w \text{ has no pair of consecutive zeroes}\}$ Solution: $R=(1+01)^*(0+\wedge)$ $R=(1^*011^*)^*(0+\wedge)+1^*(0+\wedge)$

- R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n>0, m>0\}$
- For $\Sigma = \{0,1\}$. Give a regular expression 'R' such that $L(R) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeroes} \}$ Solution: $R = (0+1)^*00(0+1)^*$
- Find R.E. for language $L=\{w\in\{0,1\}^*\mid w \text{ has no pair of consecutive zeroes}\}$ Solution: $R=(1+01)^*(0+\wedge)$ $R=(1^*011^*)^*(0+\wedge)+1^*(0+\wedge)$
- Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than 4



- R= $(aa)^*(bb)^*b$ denotes the set of all strings with even number of a's followed by an odd number of b's L(R)= $\{a^{2n}b^{2m+1} \mid n>0, m>0\}$
- For $\Sigma = \{0,1\}$. Give a regular expression 'R' such that $L(R) = \{w \in \Sigma^* | w \text{ has at least one pair of consecutive zeroes} \}$ Solution: $R = (0+1)^*00(0+1)^*$
- Find R.E. for language $L=\{w\in\{0,1\}^*\mid w \text{ has no pair of consecutive zeroes}\}$ Solution: $R=(1+01)^*(0+\wedge)$ $R=(1^*011^*)^*(0+\wedge)+1^*(0+\wedge)$
- Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than 4
- Find R.E. for set $\{a^nb^m:(n+m) \text{ is even}\}$

Identities for Regular Expression

$$\mathbf{P} = \mathbf{P} \phi = \mathbf{P} \phi$$

$$\Lambda R = R\Lambda = R$$

4
$$\Lambda^* = \Lambda$$
 and $\phi^* = \Lambda$

$$R + R = R$$

6
$$R^*R^* = R^*$$

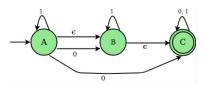
$$RR^* = R^*R$$

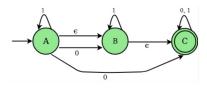
$$(R^*)^* = R^*$$

9
$$\Lambda + RR^* = R^* = \Lambda + R^*R$$

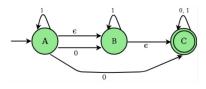
$$(PQ)^*P = P(QP)^*$$

$$(P+Q)R = PR + QR$$
 and $R(P+Q) = RP + RQ$





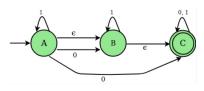
State/Input	0	1	ϵ
А	B,C	Α	В
В	-	В	C
C	C	C	-



State/Input	0	1	ϵ
A	B,C	Α	В
В	-	В	C
С	C	С	-

Epsilon Closure

 ϵ -closure for a given state X is a set of States which can be reached from states X with only (null) or ϵ moves including the state X itself.



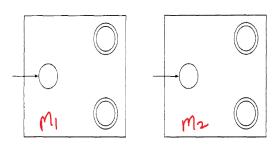
State/Input	0	1	ϵ
A	B,C	Α	В
В	-	В	С
С	C	C	

Epsilon Closure

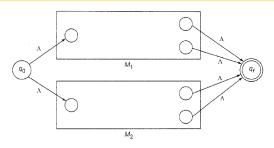
 ϵ -closure for a given state X is a set of States which can be reached from states X with only (null) or ϵ moves including the state X itself.

Example: ϵ closure (A)={A,B,C}

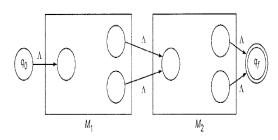
$$\epsilon$$
 closure (B)={B,C} ϵ closure (C)={C}



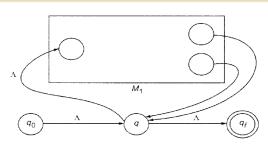
■ Automaton for $L(R_1 + R_2)$



• Automaton for $L(R_1.R_2)$



• Automaton for $L(R_1^*)$



 Generalized Transition Graph: A transition graph whose edges are labelled as R.E.

- Generalized Transition Graph: A transition graph whose edges are labelled as R.E.
- **Example:** $L(R) = (a^* + a^*(a+b)c^*)$

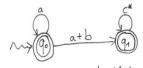
4

Automata and Regular Expression

- Generalized Transition Graph: A transition graph whose edges are labelled as R.E.
- **Example:** $L(R) = (a^* + a^*(a+b)c^*)$
- Equivalence of Generalized Transition Graph: Let R be a regular expression. Then, there exists some NFA that accepts L(R). Consequently, L(R) is a regular language.
- Find NDFA which accepts L(R) where $R=(a+bb)^*(ba^*+\Lambda)$

 The Strings denoted by such regular expressions are a subset of the language accepted by GTG, with full language being the union of all such generated subsets

- The Strings denoted by such regular expressions are a subset of the language accepted by GTG, with full language being the union of all such generated subsets
- **Example:** The language accepted by the following GTG is

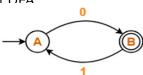


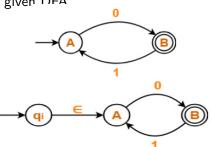
$$L(a^* + a^*(a+b)c*)$$

- State Elimination method
- Arden's Theorem

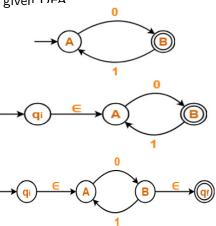
State Elimination method

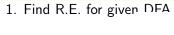
- 1 Initial State should not have any incoming edge
- Final State should not have any outgoing edge
- Only 1 final state
- 4 Eliminate each non-initial/final vertex one by one

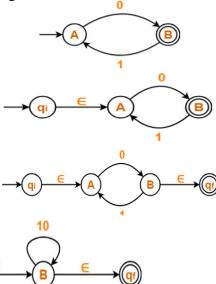


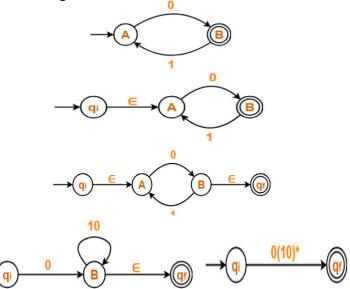


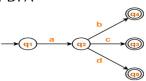
and the second

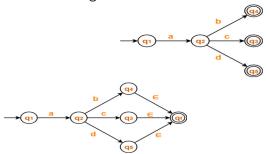


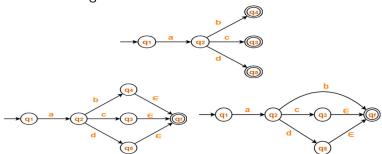


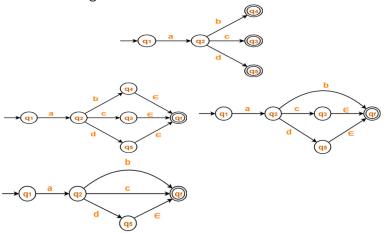


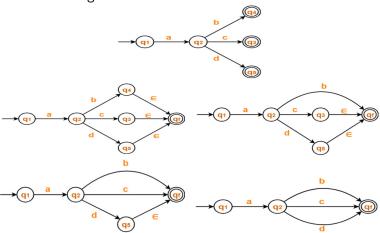


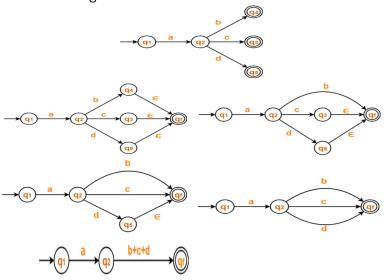


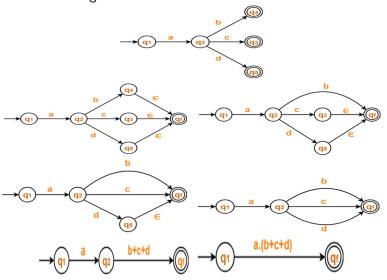


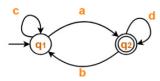


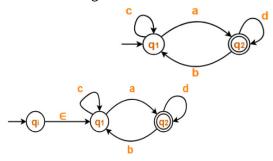


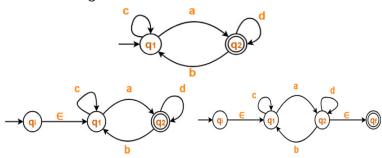


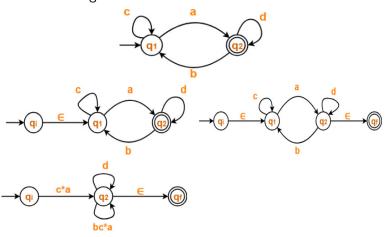


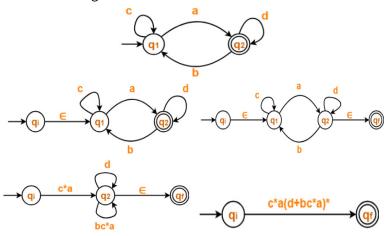




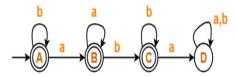




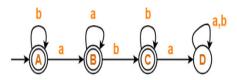




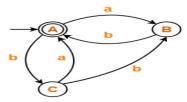
1 Find R.E. for the given DFA



1 Find R.E. for the given DFA



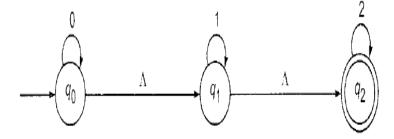
2 Find R.E. for the given DFA

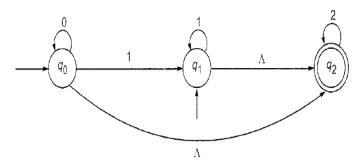


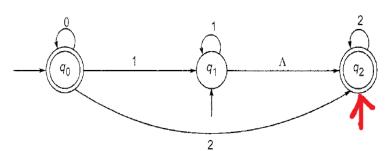
Suppose we want to replace a \land -move from vertex v_1 to vertex v_2 Then proceed as follows:

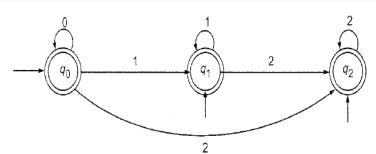
- 1 Find all the edges starting from v_2
- 2 Duplicate all these edges starting from v_1 , without changing the edge labels.
- If v_1 is an initial state, make v_2 also as initial state
- 4 If v_2 is a final state. make v_1 also as the final state

Example:

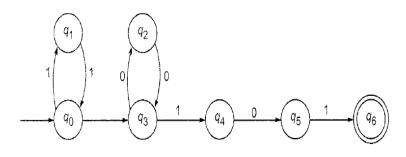








Example:



Steps:

- **1** Take ϵ closure of initial state as beginning state
- 2 Find states that can be traversed from present state for each input symbol
- 3 If any new state is found, repeat step 2 till we get no new state in the transition table.
- 4 Mark states containing final states as new final state.

State/Input	0	1
{A,B,C}	{B,C}	$\{A,B,C\}$

Steps:

- f 1 Take ϵ closure of initial state as beginning state
- 2 Find states that can be traversed from present state for each input symbol
- 3 If any new state is found, repeat step 2 till we get no new state in the transition table.
- 4 Mark states containing final states as new final state.

State/Input	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}

Steps:

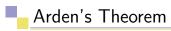
- **1** Take ϵ closure of initial state as beginning state
- 2 Find states that can be traversed from present state for each input symbol
- 3 If any new state is found, repeat step 2 till we get no new state in the transition table.
- 4 Mark states containing final states as new final state.

State/Input	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

- 1 Take ϵ closure of initial state as beginning state
- 2 Find states that can be traversed from present state for each input symbol
- 3 If any new state is found, repeat step 2 till we get no new state in the transition table.
- 4 Mark states containing final states as new final state.

State/Input	0	1
{A,B,C}	{B,C}	$\{A,B,C\}$
{B,C}	{C}	{B,C}
{C}	{C}	{C}

Now, create transition diagram



Let P and Q be two regular expressions over Σ . If P does not contain Λ , then the following equation in R i.e. R=Q+RP has a unique solution $R=QP^*$

Proof:

$$R = Q + RP \tag{1}$$

putting "R=Q+RP" in equation 1

$$R=Q+QP+RPP$$

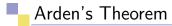
putting R recursively again and again

we get:

$$R = Q + QP + QP^2 + QP^3 + \dots$$

$$R = Q (\Lambda + P + P^2 + P^3 + ...)$$

$$R = QP^*$$



Assumptions:

- The transition diagram must not have null transitions.
- It must only 1 initial state, let v_1
- Its vertices are v_1, \ldots, v_n .
- V_i , the R.E. represents the set of strings accepted by the system even though v_i , is a final state.
- α_{ij} denotes the R.E. representing the set of labels of edges from v_i to v_j . When there is no such edge, $\alpha_{ij} = \phi$. Consequently, we can get the following set of equations in V_1, \ldots, V_n :

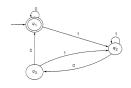
$$V_1 = V_1 \alpha_{11} + V_2 \alpha_{21} + \dots + V_n \alpha_{n1} + \wedge V_2 = V_1 \alpha_{12} + V_2 \alpha_{22} + \dots + V_n \alpha_{n2}$$

:

$$V_n = V_1 \alpha_{1n} + V_2 \alpha_{2n} + \cdots + V_n \alpha_{nn}$$

- By repeatedly applying substitutions and Arden's theorem, we can express V_i in terms of α_{ij} .
- For getting the set of strings recognized by the transition system, we have to take the "union" of all V_i corresponding to final states

1. Find R.E. for the following DFA



$$q_1=q_10+q_30+\wedge$$

$$q_2 = q_1 1 + q_2 1 + q_3 1$$

$$q_3 = q_2 0 \tag{4}$$

putting equation 4 in equation 3

$$q_2 = q_1 1 + q_2 1 + q_3 1$$

= $q_1 1 + q_2 1 + (q_2 0) 1$
= $q_1 1 + q_2 (1 + 01)$

Applying Arden's Theorem

$$q_2 = q_1 1 (1 + 01)^* (5)$$

putting 5 in equation 2

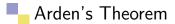
$$egin{aligned} q_1 &= q_1 0 + q_3 0 + \wedge \ &= q_1 0 + q_2 0 0 + \wedge \ &= q_1 0 + (q_1 1 (1 + 0 1)^* 0 0) + \wedge \ q_1 (0 + 1 (1 + 0 1)^* 0 0) + \wedge \end{aligned}$$

using arden's theorem again

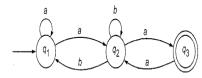
$$q_1 = \wedge (0 + 1(1 + 01)^*00)^*$$

 $(0 + 1(1 + 01)^*00)^*$

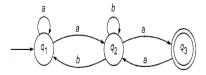
As q_1 is the final state. $: r = (0 + 1(1 + 01)^*00)^*$



• Consider the transition system below. Prove that the strings recognized are $(a + a(b + aa)^*b)^*a(b + aa)^*a$



Consider the transition system below. Prove that the strings recognized are $(a + a(b + aa)^*b)^*a(b + aa)^*a$

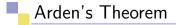


Solution:

$$q_1 = q_1 a + q_2 b + \wedge \tag{6}$$

$$q_2 = q_1 a + q_2 b + q_3 a \tag{7}$$

$$q_3 = q_2 a \tag{8}$$



Putting equation 8 in equation 7

$$q_2 = q_1 a + q_2 b + q_2 a a$$

 $q_2 = q_1 a + q_2 (b + a a)$
 $q_2 = q_1 a (b + a a)^*$

Now putting q_2 in equation 6

$$q_1 = q_1 a + q_2 b + \wedge$$

= $q_1 a + q_1 a (b + aa)^* b + \wedge$
= $q_1 (a + a(b + aa)^* b) + \wedge$
= $\wedge (a + a(b + aa)^* b)^*$
= $(a + a(b + aa)^* b)^*$

putting this in q_2

$$q_2 = (a + a(b + aa)^*b)^*a + q_2b + q_2aa$$

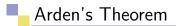
= $(a + a(b + aa)^*b)^*a + q_2(b + aa)$
= $(a + a(b + aa)^*b)^*a(b + aa)^*$

putting q_2 in q_3

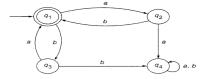
$$q_3 = (a + a(b + aa)^*b)^*a(b + aa)^*a$$
 (9)

• Since q_3 is the final state.

$$\therefore r = (a + a(b + aa)^*b)^*a(b + aa)^*a$$



Prove that the finite automaton whose transition diagram below accepts the set of all strings over alphabet {a,b} with an equal number of a's and b's, such that each prefix has atmost has atmost one more a than the b's and atmost one more b than the a's



Solution:

$$q_1 = q_2b + q_3a + \wedge \tag{10}$$
$$q_2 = q_1a \tag{11}$$

$$q_3 = q_1 b \tag{12}$$

$$a = a \cdot a \cdot b + a \cdot a \cdot b$$
 (12)

$$q_4 = q_2 a + q_3 b + q_4 a + q_4 b \tag{13}$$

putting q_2 and q_3 in q_1

$$q_1 = q_1 ab + q_1 ba + \land$$

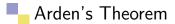
 $q_1 = q_1 (ab + ba) + \land$

applying Arden's theorem

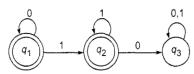
$$q_1 = \wedge (ab + ba)^*$$

 $q_1 = (ab + ba)^*$

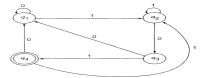
■ Now, the prefix can be even or odd in length. For Prefix x of even length, the number of a's and b's shall be equal as x is a substring formed by ab's and ba's. For prefix x of odd length, then we can write 'x' as ya or yb. As y has even number of symbols, which implies x has one more a than b or vice-versa



Describe in English the set accepted by finite automaton whose transition diagram is as under:



Construct a regular expression corresponding to the state diagram described as under:



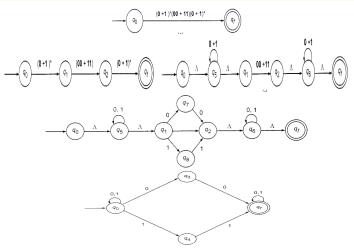
- Give R.E. for representing the set L of strings in which every 0 is immediately followed by atleast two 1's. Prove that R.E. $r = (\lambda + 1)^*(011)^*(1^*(011)^*)^*$ also describes the same set of strings.
- Prove (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*

Construction of FA equivalent to given RE

The method for constructing a finite automaton equivalent to a given regular expression is called the subset method which involves four steps.

- 1. Construct a transition system equivalent to the given regular expression using \(\rightarrow\)-moves.
- 2. Construct the transition table for the transition graph obtained in step 1.
- 3. Construct the DFA equivalent to NDFA.
- 4. Reduce the number of states if possible.
 - Construct FA equivalent to Regular Expression. $(0+1)^*(00+11)(0+1)^*$ Solution:

Construction of FA equivalent to given RE



Construction of FA equivalent to given RE

$State/\Sigma$	0	1
q_0	q_0, q_3	q_0, q_4
q 3	q_f	
q_4		q_f
q_f	q_f	q_f

converting to DFA

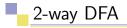
$State/\Sigma$	0	1
q 0	q_0, q_3	q_0, q_4
q_0, q_3	q_0, q_3, q_f	q_0, q_4
q_0, q_4	q_0, q_3	q_0, q_4, q_f
q_0, q_3, q_f	q_0, q_3, q_f	q_0, q_4, q_f
q_0, q_4, q_f	q_0, q_3, q_f	q_0, q_4, q_f

reducing

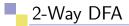
$State/\Sigma$	0	1
q 0	q_0, q_3	q_0, q_4
q_0, q_3	q_0, q_3, q_f	q_0, q_4
q_0, q_4	q_0, q_3	q_0, q_3, q_f
q_0, q_3, q_f	q_0, q_3, q_f	q_0, q_3, q_f

Construction of FA equivalent to given RE

- Construct DFA with reduced states equivalent to R.E. (10+(0+11)0*1).
- 2 Construct transition system equivalent to R.E.
 - $ab + c^*)^*b$
 - \blacksquare $a + bb + bab^*a$
 - \blacksquare $(a+b)^*abb$
- 3 Prove that $(a^*ab + ba)^*a^* = (a + ab + ba)^*$
- 4 Construct a finite automata accepting all strings over {0,1} ending in 010 or 0010.
- 5 Construct a regular grammar which can generate the set of all strings starting with a letter (A to Z) followed by a string of letters or digits (0 to 9).



- 2-way DFA allows the read head to move left or right on the input
- Two end-markers
- Needs only 1 accept or reject state.
- A tuple M = {Q, Σ , \vdash , \dashv , δ , s, t, r} where Q is the set of states Σ is the input alphabet set \vdash is the left end marker \dashv is the right end marker δ is $Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow Q \times \{L, R\}$ s is start state t is the accept state r is reject state such that $r \neq t$



Determine the acceptability of 101001 for the following:

State/ Σ	0	1
$ ightarrow q_0$	(q_0,R)	(q_1, R)
q_1	(q_1,R)	(q_2, L)
q_2	(q_0,R)	(q_2, L)
1		

where Q=
$$\{q_0, q_1, q_2\}$$
, s= q_0 , t= q_1 , r= q_2

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton with 'n' states. Let L be the regular sets accepted by M.
- Let $w \in L$ and $|w| \ge n$, then $\exists x,y,z$ such that w=xyz, $y \ne \land$ and $xy^iz \in L$ for each $i \ge 0$.
- Applications of Pumping Lemma: Used to prove that certain set are not regular.
- Steps to prove that given set is not regular:
 - Assume L is regular. Let 'n' be the number of states in corresponding FA.
 - 2 Choose a string 'w' such that $|w| \ge n$. Use pumping lemma to write w=xyz with $|xy| \le n$ and |y| > 0
 - 3 Fing a suitable integer i such that xyⁱz ∉ L. This contradicts our assumption. Hence, L is not regular.

Show that the set $L = \{a^{i^2} \mid i \le 1\}$ is not regular **Solution:**

- Let L is regularLet 'n' be number of states in FA accepting L.
- Let $w=a^{n^2} \implies |w| = n^2 > n$ by pumping lemma, w=xyz with $|xy| \le n$ and |y| > 0
- Consider xy^2z $|xy^2z| = |x| + 2 |y| + |z| > |x| + |y| + |z| :: |y| > 0$ $\implies n^2 = |xyz| = |x| + |y| + |z| < |xy^2z|$ As $|xy| \le n$, $|y| \le n$
- ∴ $|xy^2z| = |x| + 2|y| + |z| \le n^2 + n < n^2 + n + n + 1$. Hence, $|xy^2z|$ lies between n^2 and $(n+1)^2$ but not equal to any one of them.
 - $|x|^2 |x|^2 |x|$ is not a perfect square and so $|x|^2 |x| \notin L$.
 - \therefore this is a contradiction. This implies not Regular

Show that $L = \{a^p \mid p \text{ is a prime}\}\$ is not regular.

Solution:

- Let L is regular. Let 'n' be number of states in finite automata accepting L.
- Let 'p' be a prime number greater than 'n'. Let w=a^p by pumping lemma, w=xyz with |xy |≤ n and |y |> 0 x, y, z are simply strings of a's. So, y= a^m for some m ≥ 1 (and ≤ n)
- 3 Let i=p+1, then $|xy^iz|=|xyz|+|y^{i-1}|=p+(i-1)m=p+pm=p(1+m)$ which is not prime.
 - $\therefore xy^iz \notin L$. \Longrightarrow contradiction.

So, L is not regular.

- **1** Show that $L=\{0^i1^i | i \geq 1\}$ is not regular.
- 2 Show that L= {ww $|w \in \{a, b\}^*$ } is not regular.
- 3 Is $L = \{a^{2n} \mid n \ge 1\}$ regular ?

We can construct a Regular Grammar from a Regular Sets and vice versa.

Construction of a Regular Grammar from a Regular Sets

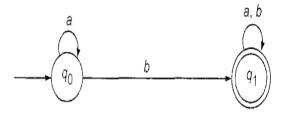
• We can show that L(G) = T(M) by using the construction of P such that:

$$A_i \rightarrow aA_j \text{ iff } \delta(q_i, a) = q_j$$

 $A_i \rightarrow a \text{ iff } \delta(q_i, a) \in F$

• Construct a regular grammar G generating the regular set represented by $P = a^*b(a+b)^*$.

Solution:



Let $G=(\{q_0,q_1\},\{a,b\},P,q_0)$ where P is given by: $q_0 \rightarrow aq_0$ $q_0 \rightarrow bq_1, q_0 \rightarrow b$ $q_1 \rightarrow aq_1, q_1 \rightarrow bq_1$ $q_1 \rightarrow a, q_1 \rightarrow b$

Construction of a Regular Set from a Regular Grammar

- We define M as:
 - 1. Each production $A_i \to aA_j$ induces a transition from q_i to q_j with label a i.e $\delta(q_i,a)=q_j$,
 - 2. Each production $A_i \to a$ induces a transition from q_i to q_f with label a i.e $\delta(q_i, a) = q_f \in F$
 - 3. $S \rightarrow \land$, corresponding transition is from q_0 to q_f with a label \land or q_0 is also a final state.
- Let $G=(\{A,B\},\{a,b\},P,A)$ where P consists of $A \rightarrow aB$, $B \rightarrow bB$ $B \rightarrow a$, $B \rightarrow bA$ Construct a transition system M accepting L(G).

- If a regular grammar G is given by $S \rightarrow aS \mid a$. Find M accepting L(G).
- Construct a DFA equivalent to grammar

$$\mathsf{S} \to \mathsf{aS} \ | \mathsf{bS} \ | \mathsf{aA}$$

$$\mathsf{A}\to\mathsf{bB}$$

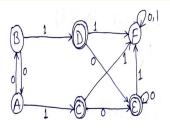
$$B \rightarrow aC,~C \rightarrow \land$$

Marian Til Transport of the International Control of the International Con

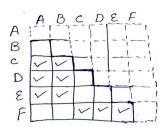
Myhill-Nerode Theorem-states that L can be accepted by an FA if and only if the set of equivalence classes of I_L is finite. It also states that the number of states in the smallest automaton accepting L is equal to the number of equivalence classes in R_L .

- It is used to prove whether or not a language L is regular
- It is also used for minimization of states in DFA
- Steps:
 - 1 Draw a table for all unordered pair of states (P,Q).
 - 2 Mark all pairs where $P \in F$ and $Q \notin F$.
 - 3 If there are unmarked pairs (P,Q) such that $[\delta(P,a),\delta(Q,a)]$ is marked, then mark [P,Q], where $a\in \sum$ is an input symbol.
 - 4 Repeat step 3 untill no more marking can be made.
 - Combine all un-marked pairs and make them a single state in minimized DFA.
- Minimize the given deterministic finite automata

Myhill Nerode Theorem



Solution:



$$\begin{array}{c} (\mathsf{B},\mathsf{A}) \implies \delta(B,0) = \mathsf{A} \\ \delta(A,0) = \mathsf{B} \ \mathbf{Unmarked} \\ \delta(B,1) = \mathsf{D} \\ \delta(A,1) = \mathsf{C} \ \mathbf{unmarked} \\ (\mathsf{D},\mathsf{C}) \implies \delta(D,0) = \mathsf{E} \\ \delta(D,0) = \mathsf{E} \ \mathbf{Unmarked} \\ \delta(C,1) = \mathsf{F} \\ \delta(C,1) = \mathsf{F} \ \mathbf{unmarked} \\ (\mathsf{E},\mathsf{C}) \implies \delta(E,0) = \mathsf{E} \\ \delta(E,0) = \mathsf{E} \ \mathbf{Unmarked} \\ \delta(E,1) = \mathsf{F} \\ \delta(C,1) = \mathsf{F} \ \mathbf{unmarked} \\ \delta(E,1) = \mathsf{F} \\ \delta(C,1) = \mathsf{F} \ \mathbf{unmarked} \\ \delta(E,0) = \mathsf{E} \ \mathbf{Unmarked} \\ (\mathsf{E},\mathsf{D}) \implies \delta(E,0) = \mathsf{E} \ \mathbf{Unmarked} \\ \delta(D,1) = \mathsf{F} \end{array}$$

$$\delta(D,1) = \mathsf{F} \ \mathsf{unmarked}$$

$$(\mathsf{F},\mathsf{A}) \implies \delta(F,0) = \mathsf{F}$$

$$\delta(A,0) = \mathsf{B} \ \mathsf{Unmarked}$$

$$\delta(F,1) = \mathsf{F}$$

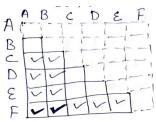
$$\delta(A,1) = \mathsf{C} \ \mathsf{Marked}, \ \mathsf{Mark} \ (\mathsf{F},\mathsf{A})$$

$$(\mathsf{F},\mathsf{B}) \implies \delta(F,0) = \mathsf{F}$$

$$\delta(B,0) = \mathsf{A} \ \mathsf{Marked}, \ \mathsf{Mark} \ (\mathsf{F},\mathsf{B})$$

$$\delta(F,1) = \mathsf{F}$$

$$\delta(B,1) = \mathsf{D} \ \mathsf{Marked}, \ \mathsf{Mark} \ (\mathsf{F},\mathsf{B})$$



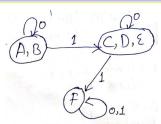
Therefore, unmarked pairs:

(A,B),(D,C),(E,C),(E,D)

here, (C,D,E) form a common pair. So, combined state (C,D,E)

States	0	1
{A,B}	{A,B}	$\{C,D,E\}$
$\{C,D,E\}$	$\{C,D,E\}$	{ F }
{F}	{F}	{F}

Myhill Nerode Theorem



Questions?

+91 9911375598, akyadav@akyadav.in

Thank you