

Introduction to networking in Linux

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-1

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

Introduction to networking in Linux

- Wired network
- Wireless network
- Three types of Linux systems
- 1. Desktop/laptop networking
- 2. Server networking
- 3. Enterprise networking

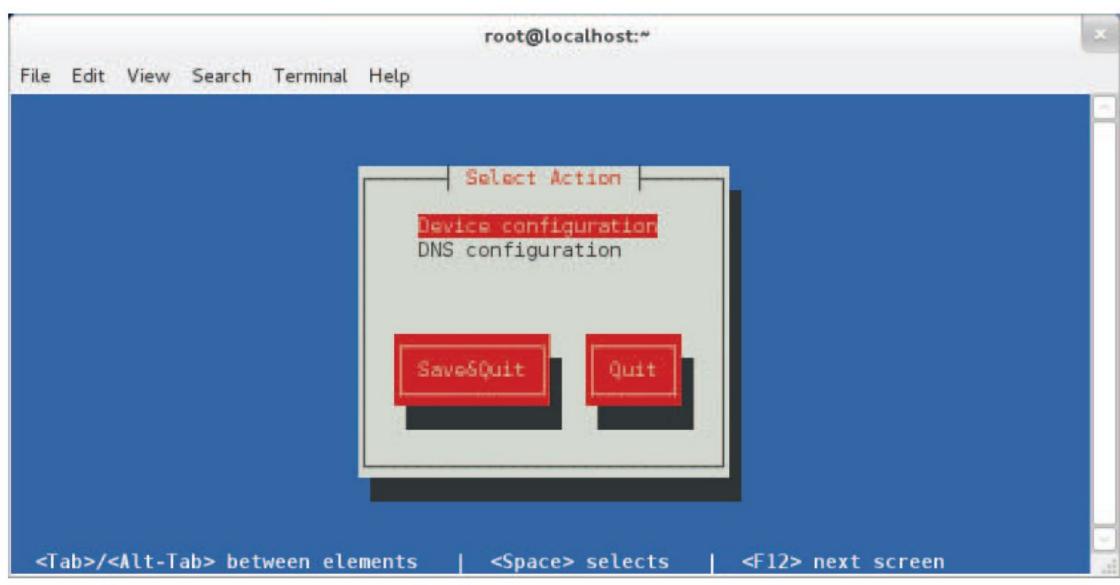
Configuring Networking for Desktops Department of Computer Science and Engineering

- General activities that occur when Linux is set to automatically connect to the Internet with NetworkManager:
- Activate network interfaces
- Request DHCP service
- Get response from DHCP server
 - ✓ IP address
 - ✓ Subnet mask
 - ✓ Lease time
 - ✓ Domain name server
 - ✓ Default gateway
- Update local network settings

Checking your network interfaces

- Checking your network from NetworkManager
- Checking your network from the command line
- Viewing network interfaces: ip addr show, ifconfig wlan0
- Checking connectivity to remote systems: ping
- Checking routing information: route, traceroute google.com
- Viewing the host and domain names: hostname, dnsdomainname

- Configuring network interfaces
- Configuring a network proxy connection
- Configuring Networking for Servers
 - ➤ Using system-config-network
- Configuring Networking in the Enterprise



Configuring Networking for Servers

```
# service NetworkManager stop
# service network restart
# chkconfig NetworkManager off
# chkconfig network on
```

```
# systemctl stop NetworkManager.service
# systemctl disable NetworkManager.service
# service network restart
# chkconfig network on
```

system-config-network

Choosing device configuration

```
Network Configuration
                     Wired connection :
Name
Device
                     Wired connection l
Use DHCP
Static IP
                      192.168.0.140
                     255.255.255.0
Netmask
Default gateway IP
                     192.168.0.1
Primary DNS Server
                     192.168.0.2
Secondary DNS Server 192.168.0.3
                          Cancel
```


Choosing DNS configuration

```
DNS configuration
                abc.example.com
Hostname
                192.168.0.2
Primary DNS
Secondary DNS
                192.168.0.3
Tertiary DNS
DNS search path example.com
     0k
                   Cancel
```


Network basics & tools

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-2

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

Introduction to networking in Linux

- Wired network
- Wireless network
- Three types of Linux systems
- 1. Desktop/laptop networking
- 2. Server networking
- 3. Enterprise networking

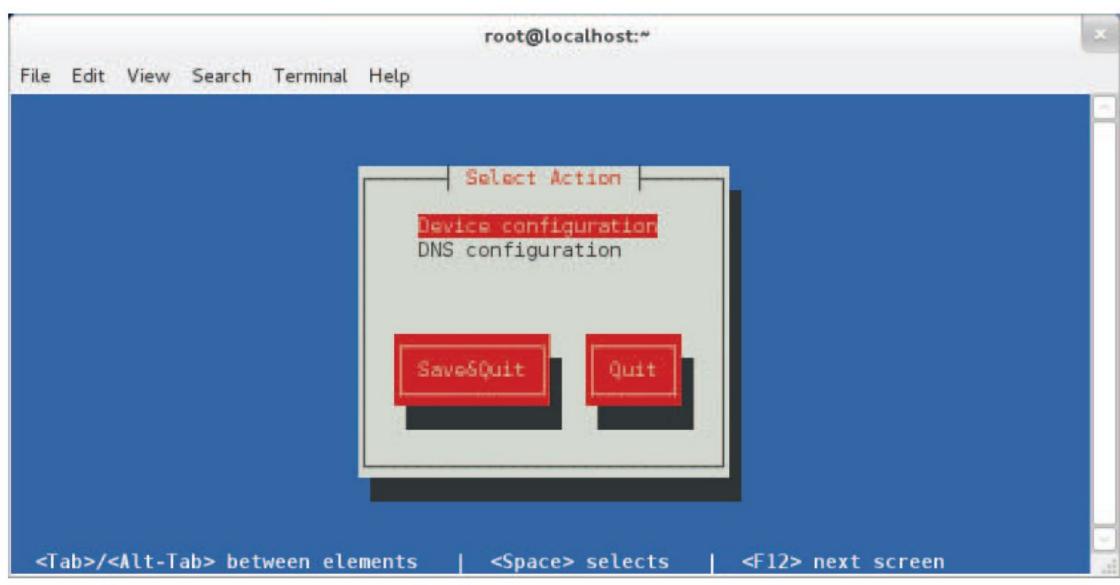
Configuring Networking for Desktops Department of Computer Science and Engineering

- General activities that occur when Linux is set to automatically connect to the Internet with NetworkManager:
- Activate network interfaces
- Request DHCP service
- Get response from DHCP server
 - ✓ IP address
 - ✓ Subnet mask
 - ✓ Lease time
 - ✓ Domain name server
 - ✓ Default gateway
- Update local network settings

Checking your network interfaces

- Checking your network from NetworkManager
- Checking your network from the command line
- Viewing network interfaces: ip addr show, ifconfig wlan0
- Checking connectivity to remote systems: ping
- Checking routing information: route, traceroute google.com
- Viewing the host and domain names: hostname, dnsdomainname

- Configuring network interfaces
- Configuring a network proxy connection
- Configuring Networking for Servers
 - ➤ Using system-config-network
- Configuring Networking in the Enterprise

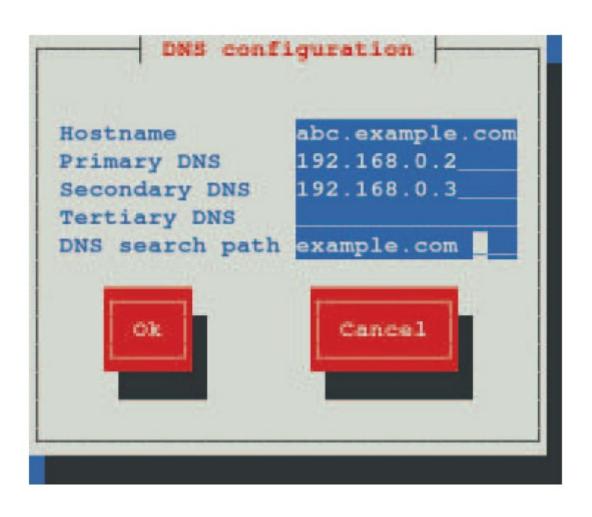


Configuring Networking for Servers

```
# service NetworkManager stop
# service network restart
# chkconfig NetworkManager off
# chkconfig network on
```

```
# systemctl stop NetworkManager.service
# systemctl disable NetworkManager.service
# service network restart
# chkconfig network on
```

system-config-network



Choosing device configuration

```
Network Configuration
                     Wired connection :
Name
Device
                     Wired connection l
Use DHCP
Static IP
                      192.168.0.140
                     255.255.255.0
Netmask
Default gateway IP
                     192.168.0.1
Primary DNS Server
                     192.168.0.2
Secondary DNS Server 192.168.0.3
                          Cancel
```


Choosing DNS configuration

Understanding networking configuration files

Department of Computer Science and Engineering

Network interface files: /etc/sysconfig/network-scripts/ifcfg-[interface]

```
DEVICE=eth1
DEVICE=eth0
                              HWADDR=00:1B:21:0A:E8:5E
HWADDR=F0:DE:F1:28:46:D9
                              TYPE=Ethernet
TYPE=Ethernet
                              BOOTPROTO=none
BOOTPROTO=dhcp
                              ONBOOT=yes
                              NM CONTROLLED=no
ONBOOT=yes
                              USERCTL=no
NM CONTROLLED=no
                               IPADDR=192.168.0.140
USERCTL=no
                              NETMASK=255.255.25.0
                              GATEWAY=192.168.0.1
```

• For other settings you can use in ifcfg files, check the sysconfig.txt file in the /usr/share/doc/initscripts-* directory.

/etc/sysconfig/network file

```
NETWORKING=yes
HOSTNAME=abc.example.com
GATEWAY=192.168.0.1
```

/etc/hosts file

```
127.0.0.1 localhost.localdomain localhost
::1 mycomputer chris localhost6.localdomain6 localhost6
192.168.0.201 node1.example.com node1 joe
192.168.0.202 node2.example.com node2 sally
```


/etc/resolv.conf file

```
# Generated by NetworkManager
nameserver 192.168.0.2
nameserver 192.168.0.3
```

/etc/nsswitch.conf

hosts: files dns

Configuring Networking in the Enterprise

- Configuring Linux as a router
- Configuring Linux as a DHCP server
- Configuring Linux as a DNS server
- Configuring Linux as a proxy server
- Configuring VLANs in Linux

File Transfer Protocol (FTP)

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-3

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

File Transfer Protocol (FTP)

- Understanding FTP
- Installing the vsftpd FTP Server
- Starting the vsftpd Service
- Securing Your FTP Server
- Opening up your firewall for FTP
- Allowing FTP access in TCP wrappers
- Configuring Your FTP Server

Study of Docker

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-3

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

Study of Docker

- Docker founded by Solomon Hykes in 2010 as dotCloud
- Docker is an open-source containerization platform. It enables developers to package applications into containers—standardized executable components combining application source code with the operating system (OS) libraries and dependencies required to run that code in any environment

Study of Docker

- Docker is a set of platform as a service products that use OS-level virtualization to deliver software in packages called containers. Containers are isolated from one another and bundle their own software, libraries and configuration files; they can communicate with each other through well-defined channels
- Docker is an open platform for developing, shipping, and running applications. Docker enables you to separate your applications from your infrastructure so you can deliver software quickly. With Docker, you can manage your infrastructure in the same ways you manage your applications.

Domain Name System (DNS)

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-4

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

Domain Name System (DNS)

- Each computer connected to a TCP/IP network, such as the Internet, is identified by its own IP address.
- IP addresses are difficult to remember, so a domain name version of each IP address is also used to identify a host.
- A domain name consists of two parts, the hostname and the domain
- The hostname is the computer's specific name, and the domain identifies the network of which the computer is a part

- The domains usually have extensions that identify the type of host.
- For example, .edu is used for educational institutions and .com is used for businesses.
- International domains usually have extensions that indicate the country they are in, such as .de for Germany, .au for Australia and .in for India.
- The combination of a hostname, domain, and extension forms a unique name by which a computer can be referenced.
- The domain can be split into further subdomains.

- To provide the service of translating domain addresses to IP addresses, databases of domain names were developed and placed on their own servers.
- To find the IP address of a domain name, you send a query to a name server, which then looks up the IP address for you and sends it back.
- In a large network, several name servers can cover different parts of the network.
- If a name server cannot find a particular IP address, it sends the query on to another name server that is more likely to have it.

/etc/hosts

127.0.0.1	localhost.localdomain localhost turtle.mytrek.com
::1	localhost6.localdomain6 localhost6
192.168.0.1	turtle.mytrek.com
192.168.0.2	rabbit.mytrek.com
192.168.34.56	pango1.mytrain.com

/etc/resolv.conf

search mytrek.com mytrain.com nameserver 192.168.0.1 nameserver 192.168.0.3

/etc/host.conf

Department of Computer Science and Engineering

Option	Description
order	Specifies sequence of name resolution methods: hosts Checks for name in the local /etc/host file bind Queries a DNS name server for an address nis Uses Network Information Service protocol to obtain an address
alert	Checks addresses of remote sites attempting to access your system; you turn it on or off with the on and off options
nospoof	Confirms addresses of remote sites attempting to access your system
trim	Checks your localhost's file; removes the domain name and checks only for the hostname; enables you to use only a hostname in your host file for an IP address
multi	Checks your localhost's file; allows a host to have several IP addresses; you turn it on or off with the on and off options


```
/etc/host.conf
# host.conf file
# Lookup names in host file and then check DNS
order bind host
# There are no multiple addresses
multi off
```


/etc/nsswitch.conf: Name Service Switch

Department of Computer Science and Engineering

File	Description
aliases	Mail aliases, used by Sendmail
ethers	Ethernet numbers
group	Groups of users
hosts	Hostnames and numbers
netgroup	Networkwide list of hosts and users, used for access rules; C libraries before glibc 2.1 only support netgroups over NIS
network	Network names and numbers
passwd	User passwords
protocols	Network protocols
publickey	Public and secret keys for SecureRPC used by NFS and NIS+
rpc	Remote procedure call names and numbers
services	Network services
shadow	Shadow user passwords

Service	Description
files	Checks corresponding /etc file for the configuration (for example, /etc/hosts for hosts); this service is valid for all files
db	Checks corresponding /var/db databases for the configuration; valid for all files except netgroup
compat	Valid only for passwd, group, and shadow files
dns	Checks the DNS service; valid only for hosts file
nis	Checks the NIS; valid for all files
nisplus	NIS version 3
hesiod	Uses Hesiod for lookup

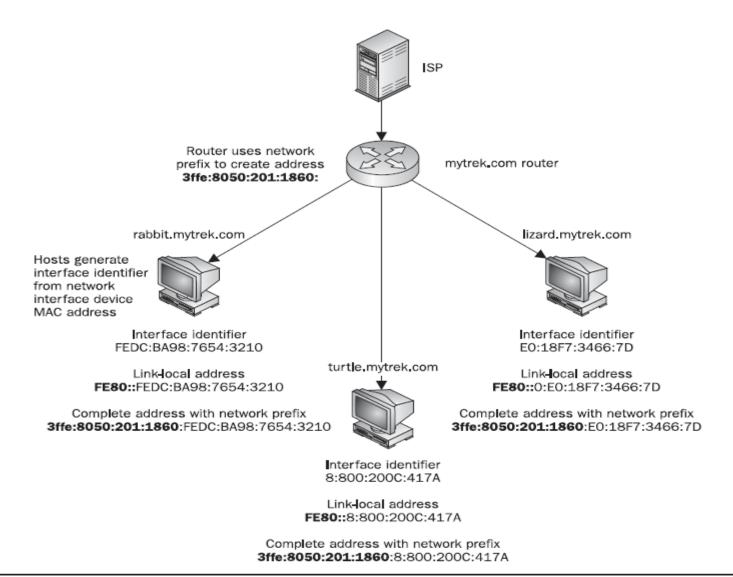
 TABLE 34-9
 NSS Configuration Services


```
/etc/nsswitch.conf
# /etc/nsswitch.conf
 An example Name Service Switch config file.
                        db files nisplus nis
passwd:
shadow:
                        db files nisplus nis
                        db files nisplus nis
group:
                        files nisplus dns
hosts:
                        nisplus [NOTFOUND=return] files
bootparams:
ethers:
                        files
netmasks:
                        files
networks:
                        files
                        files
protocols:
                        files
rpc:
services:
                        files
                        nisplus
netgroup:
publickey:
                        nisplus
automount:
                        files
aliases:
                        files nisplus
```


Dynamic host configuration Protocol (DHCP)

Department of Computer Science and Engineering

Linux for Devices


Module-2, Lecture-5

By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

- IPv6 Stateless Autoconfiguration
- Generating the Local Address
- Generating the Full Address
- Router Renumbering
- IPv6 Stateful Autoconfiguration: DHCPv6
- Linux as an IPv6 Router: radvd
- DHCP for IPv4

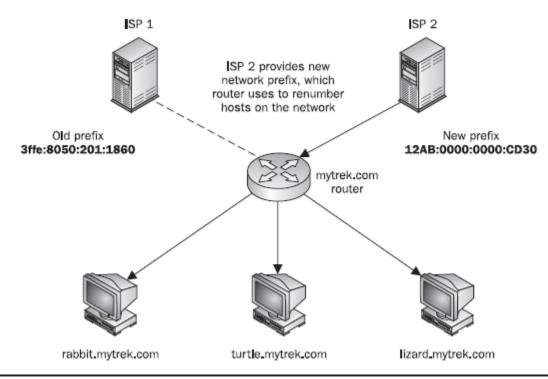


FIGURE 35-2 Router renumbering with IPv6 autoconfiguration

Linux as an IPv6 Router: radvd

Department of Computer Science and Engineering

```
interface eth0 {
    AdvSendAdvert on;
    prefix fec0:0:0:0::/64
    {
       AdvOnLink on;
       AdvAutonomous on;
    };
};
```

DHCP for IPv4

- Configuring DHCP IPv4 Client Hosts
- Configuring the DHCP IPv4 Server
- Dynamic IPv4 Addresses for DHCP
- DHCP Dynamic DNS Updates
- DHCP Subnetworks
- DHCP Fixed Addresses

Network information service

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-6

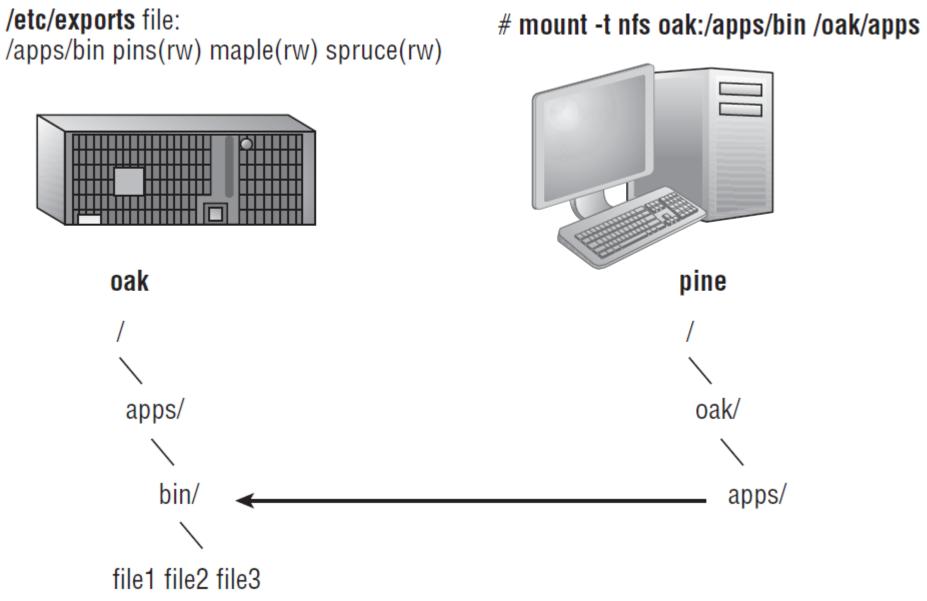
By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

Network file system

Department of Computer Science and Engineering

Linux for Devices

Module-2, Lecture-7


By: Dr. A K Yadav (9911375598)
Dept of CSE, ASET, AUUP

Network file system

- An NFS file server provides an easy way to share large amounts of data among the users and computers in an organization.
- An administrator of a Linux system that is configured to share its filesystems using NFS must perform the following tasks to set up NFS:
 - 1. Set up the network
 - 2. Start the NFS service
 - 3. Choose what to share from the server.
 - 4. Set up security on the server
 - 5. Mount the filesystem on the client.

- Above figure illustrates a Linux file server using NFS to share (export) a filesystem and a client computer mounting the filesystem to make it available to its local users.
- In this example, a computer named oak makes its /apps/bin directory available to clients on the network (pine, maple, and spruce) by adding an entry to the /etc/exports file.
- The client computer (pine) sees that the resource is available and mounts the resource on its local filesystem at the mount point /oak/apps, after which any files, directories, or subdirectories from /apps/bin on oak are available to users on pine.

